mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
474 lines
20 KiB
Python
474 lines
20 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM
|
|
|
|
from tensorrt_llm.models.llama.weight import (load_from_awq_llama,
|
|
load_from_fp8_llama)
|
|
|
|
from ... import profiler
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import RotaryScalingType, Tensor, recv, send
|
|
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
|
|
Embedding, GatedMLP, MoeConfig, PositionEmbeddingType,
|
|
PromptTuningEmbedding, RmsNorm)
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ...plugin import init_all_reduce_helper
|
|
from ...quantization import QuantMode
|
|
from ...runtime.lora_manager import LoraConfig
|
|
from ...top_model_mixin import TopModelMixin
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
PretrainedConfig)
|
|
from .weight import load_from_hf_llama
|
|
|
|
|
|
class LLaMADecoderLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
self.attention = Attention(
|
|
layer_idx=self.layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=config.dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=config.attn_bias,
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
rotary_embedding_base=config.rotary_base,
|
|
rotary_embedding_scaling=config.rotary_scaling,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
tp_rank=config.mapping.tp_rank,
|
|
quant_mode=config.quant_mode,
|
|
enable_pos_shift=config.enable_pos_shift,
|
|
dense_context_fmha=config.dense_context_fmha,
|
|
max_lora_rank=config.max_lora_rank)
|
|
|
|
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
|
|
|
|
ClsMLP = GatedMLP
|
|
mlp_kwargs = {}
|
|
if config.moe_num_experts > 1:
|
|
ClsMLP = MOE
|
|
mlp_kwargs = {
|
|
"moe_config":
|
|
MoeConfig(
|
|
config.moe_num_experts,
|
|
config.moe_top_k,
|
|
config.moe_tp_mode,
|
|
config.moe_normalization_mode,
|
|
),
|
|
"tp_rank":
|
|
config.mapping.tp_rank,
|
|
}
|
|
|
|
self.mlp = ClsMLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=mlp_hidden_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
bias=config.mlp_bias,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
quant_mode=config.quant_mode,
|
|
max_lora_rank=config.max_lora_rank,
|
|
**mlp_kwargs)
|
|
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
medusa_packed_mask=None, # For Medusa support
|
|
medusa_position_offsets=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
lora_layer_params=None):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
medusa_packed_mask=medusa_packed_mask, # For Medusa support
|
|
medusa_position_offsets=medusa_position_offsets,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
hidden_states = self.mlp(hidden_states,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
hidden_states = residual + hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class LLaMAModel(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig) -> None:
|
|
super().__init__()
|
|
init_all_reduce_helper()
|
|
|
|
self.mapping = config.mapping
|
|
self.use_prompt_tuning = config.use_prompt_tuning
|
|
EmbeddingCls = PromptTuningEmbedding if config.use_prompt_tuning else Embedding
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = EmbeddingCls(
|
|
num_embeddings=config.vocab_size,
|
|
embedding_dim=config.hidden_size,
|
|
dtype=config.dtype,
|
|
tp_size=self.mapping.tp_size
|
|
if config.use_parallel_embedding else 1,
|
|
tp_group=self.mapping.tp_group
|
|
if config.use_parallel_embedding else None,
|
|
sharding_dim=config.embedding_sharding_dim,
|
|
tp_rank=self.mapping.tp_rank,
|
|
)
|
|
|
|
self.layers = DecoderLayerList(LLaMADecoderLayer, config)
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
medusa_position_offsets=None, # For Medusa support
|
|
medusa_packed_mask=None, # For Medusa support
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None):
|
|
|
|
kv_cache_params.fill_none_tensor_list(len(self.layers))
|
|
|
|
if use_cache:
|
|
presents = []
|
|
|
|
ptuning_args = [
|
|
prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if self.use_prompt_tuning else []
|
|
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
|
|
hidden_states = self.layers.forward(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_params=lora_params,
|
|
medusa_position_offsets=medusa_position_offsets,
|
|
medusa_packed_mask=medusa_packed_mask)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class LLaMAForCausalLM(DecoderModelForCausalLM, TopModelMixin):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
self.check_config(config)
|
|
transformer = LLaMAModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
self.quant_mode = config.quant_mode
|
|
self.mapping = config.mapping
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
def check_config(self, config):
|
|
config.set_if_not_exist('mlp_bias', False)
|
|
config.set_if_not_exist('attn_bias', False)
|
|
config.set_if_not_exist('rotary_base', 10000.0)
|
|
config.set_if_not_exist('rotary_scaling', None)
|
|
config.set_if_not_exist('enable_pos_shift', False)
|
|
config.set_if_not_exist('dense_context_fmha', False)
|
|
config.set_if_not_exist('moe_num_experts', 0)
|
|
config.set_if_not_exist('moe_top_k', 0)
|
|
config.set_if_not_exist('moe_tp_mode',
|
|
MoeConfig.ParallelismMode.TENSOR_PARALLEL)
|
|
config.set_if_not_exist(
|
|
'moe_normalization_mode',
|
|
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_model_dir,
|
|
dtype='float16',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_mode: Optional[QuantMode] = None,
|
|
**kwargs):
|
|
cfg = AutoConfig.from_pretrained(hf_model_dir)
|
|
|
|
num_kv_heads = cfg.num_key_value_heads if hasattr(cfg, "num_key_value_heads") \
|
|
else cfg.num_attention_heads
|
|
if mapping is None:
|
|
mapping = Mapping()
|
|
if quant_mode is None:
|
|
quant_mode = QuantMode(0)
|
|
|
|
cfg.mapping = mapping
|
|
|
|
cfg.dtype = dtype
|
|
cfg.quant_mode = quant_mode
|
|
|
|
cfg.norm_epsilon = cfg.rms_norm_eps
|
|
|
|
if cfg.model_type == 'mixtral':
|
|
moe_config = MoeConfig(
|
|
num_experts=cfg.num_local_experts,
|
|
top_k=cfg.num_experts_per_tok,
|
|
tp_mode=kwargs.get("moe_tp_mode",
|
|
MoeConfig.ParallelismMode.TENSOR_PARALLEL),
|
|
normalization_mode=kwargs.get(
|
|
"moe_normalization_mode",
|
|
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE),
|
|
).validate()
|
|
# HF LLaMA-type models are implicitly using gated activation.
|
|
# With our MoE implementation, we must make it explicit
|
|
cfg.hidden_act = 'swiglu'
|
|
cfg.rotary_base = cfg.rope_theta
|
|
else:
|
|
moe_config = MoeConfig()
|
|
config = {
|
|
'architecture': cfg.architectures[0],
|
|
'dtype': cfg.dtype,
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': cfg.num_hidden_layers,
|
|
'num_attention_heads': cfg.num_attention_heads,
|
|
'hidden_size': cfg.hidden_size,
|
|
'intermediate_size': cfg.intermediate_size,
|
|
'num_key_value_heads': cfg.num_key_value_heads,
|
|
'vocab_size': cfg.vocab_size,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': cfg.max_position_embeddings,
|
|
'hidden_act': cfg.hidden_act,
|
|
'rotary_base': getattr(cfg, 'rotary_base', 10000.0),
|
|
'rotary_scaling': getattr(cfg, 'rotary_scaling', None),
|
|
'norm_epsilon': cfg.rms_norm_eps,
|
|
'quantization': {
|
|
'group_size': 128,
|
|
},
|
|
'mapping': {
|
|
'world_size': mapping.world_size,
|
|
'tp_size': mapping.tp_size,
|
|
'pp_size': mapping.pp_size,
|
|
},
|
|
"moe_config": {
|
|
"num_experts": moe_config.num_experts,
|
|
"top_k": moe_config.top_k,
|
|
"tp_mode": moe_config.tp_mode,
|
|
"normalization_mode": moe_config.normalization_mode,
|
|
},
|
|
'use_parallel_embedding': kwargs.get("use_parallel_embedding",
|
|
False),
|
|
'embedding_sharding_dim': kwargs.get("embedding_sharding_dim", 0),
|
|
'use_prompt_tuning': kwargs.get("use_prompt_tuning", False),
|
|
'moe_num_experts': moe_config.num_experts,
|
|
'moe_top_k': moe_config.top_k,
|
|
'moe_tp_mode': moe_config.tp_mode,
|
|
'moe_normalization_mode': moe_config.normalization_mode,
|
|
'use_fused_mlp': kwargs.get("use_fused_mlp", False),
|
|
'enable_pos_shift': kwargs.get("enable_pos_shift", False),
|
|
'dense_context_fmha': kwargs.get("dense_context_fmha", False),
|
|
}
|
|
if quant_mode.is_int4_weight_only_per_group():
|
|
config['quantization'].update({
|
|
'quant_algo': 'W4A16_AWQ',
|
|
'has_zero_point': False,
|
|
'pre_quant_scale': True,
|
|
'exclude_modules': [],
|
|
})
|
|
elif quant_mode.has_fp8_qdq() and quant_mode.has_fp8_kv_cache():
|
|
config['quantization'].update({
|
|
'quant_algo': 'FP8',
|
|
'kv_cache_quant_algo': 'FP8'
|
|
})
|
|
else:
|
|
if quant_mode != QuantMode(0):
|
|
raise ValueError(f"Unsupported quantization mode: {quant_mode}")
|
|
|
|
model_config = PretrainedConfig.from_dict(config)
|
|
model_config.set_rank(mapping.tp_rank)
|
|
tllm_llama = LLaMAForCausalLM(model_config)
|
|
q_weights = {}
|
|
if quant_mode.has_any_quant():
|
|
q_weights = tllm_llama._quantize(hf_model_dir, dtype, cfg, **kwargs)
|
|
|
|
# For debug purpose, skip weights loading to be faster
|
|
if kwargs.get("skip_loading_weights", False):
|
|
return tllm_llama
|
|
|
|
# weights already loaded in _quantize for int4 weight only
|
|
if not quant_mode.is_int4_weight_only_per_group():
|
|
profiler.start("Loading weights from HF")
|
|
hf_llama = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
device_map={
|
|
"model": "cpu",
|
|
"lm_head": "cpu",
|
|
"embed_tokens": "cpu",
|
|
"layers": "cpu",
|
|
"norm": "cpu",
|
|
}, # Load to CPU memory
|
|
torch_dtype='auto',
|
|
)
|
|
|
|
weights = load_from_hf_llama(
|
|
tllm_llama,
|
|
hf_llama,
|
|
mapping=mapping,
|
|
dtype=dtype,
|
|
# TODO: these shall be outside from_hugging_face too.
|
|
use_gemm_woq_plugin=kwargs.get("use_gemm_woq_plugin", False),
|
|
lora_config=kwargs.get("lora_config", LoraConfig()),
|
|
)
|
|
profiler.stop("Loading weights from HF")
|
|
del hf_llama
|
|
weights.update(q_weights)
|
|
tllm_llama.load(weights)
|
|
else:
|
|
tllm_llama.load(q_weights)
|
|
return tllm_llama
|
|
|
|
def _quantize(self, hf_model_dir, dtype, cfg, **kwargs):
|
|
'''Given the quant_mode set in the Module object, read from given hf model
|
|
call AMMO to generate quantization scales, and set the scales back the module parameters.
|
|
'''
|
|
# use self destructed temporary path if kwargs[quantization_cache_dir] is not specified
|
|
# sometimes the quantization checkpoint path needs to be saved for debug purpose
|
|
quantized_temp_dir = tempfile.TemporaryDirectory("llama-quantized")
|
|
quantized_checkpoint_path = kwargs.get("quantization_cache_dir",
|
|
quantized_temp_dir.name)
|
|
quantize_lm_head = kwargs.get("quantize_lm_head", False)
|
|
quant_mode = cfg.quant_mode
|
|
ammo_qformat = None
|
|
calib_size = None
|
|
if quant_mode.has_fp8_qdq() or quant_mode.has_fp8_kv_cache():
|
|
ammo_qformat = 'fp8'
|
|
calib_size = 512
|
|
# TODO: how to distinguish from quant_mode about int4_awq or int4_gptq?
|
|
elif quant_mode.is_int4_weight_only_per_group():
|
|
ammo_qformat = 'int4_awq'
|
|
calib_size = 32
|
|
assert ammo_qformat is not None
|
|
|
|
# local import to avoid pytest issue when importing AMMO and transformers lib
|
|
from .quantize import quantize_llama_and_export
|
|
quantize_llama_and_export(hf_model_dir,
|
|
quantized_checkpoint_path,
|
|
ammo_qformat,
|
|
dtype,
|
|
calib_size=calib_size,
|
|
quantize_lm_head=quantize_lm_head)
|
|
|
|
ckpt = Path(quantized_checkpoint_path) / "llama_tp1_rank0.npz"
|
|
assert ckpt.exists(), f"The expecting checkpoint path {ckpt} does not exist" \
|
|
"it's likely quantization failed, pls check error logs"
|
|
hf_config = AutoConfig.from_pretrained(hf_model_dir,
|
|
trust_remote_code=True)
|
|
if ammo_qformat == 'fp8':
|
|
return load_from_fp8_llama(
|
|
str(ckpt),
|
|
hf_config.num_hidden_layers,
|
|
cfg.mapping,
|
|
fp8_kv_cache=quant_mode.has_fp8_kv_cache())
|
|
else:
|
|
return load_from_awq_llama(str(ckpt),
|
|
hf_config.num_hidden_layers,
|
|
hf_config.vocab_size,
|
|
cfg.mapping,
|
|
dtype=dtype)
|
|
|
|
# llama specific setters, user shall has the chance to change the module attributes after
|
|
# from_hugging_face factory method created the model when these attributes is not included in the huggingface checkpoint
|
|
|
|
def rotary_base(self, val):
|
|
for decoder in self.layers:
|
|
decoder.attention.rotary_embedding_base = val
|
|
return self
|
|
|
|
def rotary_scaling(self, scaling_type, factor):
|
|
# TODO: what if there are some other behaviors triggered by the these changes?
|
|
# should implement these assignment as setters of the Attention Module
|
|
assert scaling_type in ("linear", "dynamic"), f"Got {scaling_type}"
|
|
assert factor > 1.0, f"Got {factor}"
|
|
for decoder in self.layers:
|
|
decoder.attention.rotary_embedding_scale_type = RotaryScalingType.linear if scaling_type == "linear" else RotaryScalingType.dynamic
|
|
decoder.attention.rotary_embedding_scale = factor
|
|
return self
|
|
|
|
def default_plugin_config(self, **kwargs):
|
|
plugin_config = super().default_plugin_config(**kwargs)
|
|
if self.quant_mode.is_int4_weight_only_per_group():
|
|
plugin_config.set_weight_only_groupwise_quant_matmul_plugin()
|
|
return plugin_config
|