TensorRT-LLMs/tensorrt_llm/models/llama/model.py
Kaiyu Xie 655524dd82
Update TensorRT-LLM (#1168)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-27 17:37:34 +08:00

474 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
from pathlib import Path
from typing import Optional
from transformers import AutoConfig, AutoModelForCausalLM
from tensorrt_llm.models.llama.weight import (load_from_awq_llama,
load_from_fp8_llama)
from ... import profiler
from ..._utils import pad_vocab_size
from ...functional import RotaryScalingType, Tensor, recv, send
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, MoeConfig, PositionEmbeddingType,
PromptTuningEmbedding, RmsNorm)
from ...mapping import Mapping
from ...module import Module
from ...plugin import init_all_reduce_helper
from ...quantization import QuantMode
from ...runtime.lora_manager import LoraConfig
from ...top_model_mixin import TopModelMixin
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
PretrainedConfig)
from .weight import load_from_hf_llama
class LLaMADecoderLayer(Module):
def __init__(self, config: PretrainedConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
self.attention = Attention(
layer_idx=self.layer_idx,
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
tp_rank=config.mapping.tp_rank,
quant_mode=config.quant_mode,
enable_pos_shift=config.enable_pos_shift,
dense_context_fmha=config.dense_context_fmha,
max_lora_rank=config.max_lora_rank)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
ClsMLP = GatedMLP
mlp_kwargs = {}
if config.moe_num_experts > 1:
ClsMLP = MOE
mlp_kwargs = {
"moe_config":
MoeConfig(
config.moe_num_experts,
config.moe_top_k,
config.moe_tp_mode,
config.moe_normalization_mode,
),
"tp_rank":
config.mapping.tp_rank,
}
self.mlp = ClsMLP(hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
max_lora_rank=config.max_lora_rank,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(
self,
hidden_states,
attention_mask=None,
medusa_packed_mask=None, # For Medusa support
medusa_position_offsets=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
medusa_packed_mask=medusa_packed_mask, # For Medusa support
medusa_position_offsets=medusa_position_offsets,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class LLaMAModel(Module):
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
init_all_reduce_helper()
self.mapping = config.mapping
self.use_prompt_tuning = config.use_prompt_tuning
EmbeddingCls = PromptTuningEmbedding if config.use_prompt_tuning else Embedding
if self.mapping.is_first_pp_rank():
self.vocab_embedding = EmbeddingCls(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
dtype=config.dtype,
tp_size=self.mapping.tp_size
if config.use_parallel_embedding else 1,
tp_group=self.mapping.tp_group
if config.use_parallel_embedding else None,
sharding_dim=config.embedding_sharding_dim,
tp_rank=self.mapping.tp_rank,
)
self.layers = DecoderLayerList(LLaMADecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(
self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
medusa_position_offsets=None, # For Medusa support
medusa_packed_mask=None, # For Medusa support
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
kv_cache_params.fill_none_tensor_list(len(self.layers))
if use_cache:
presents = []
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if self.use_prompt_tuning else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
medusa_position_offsets=medusa_position_offsets,
medusa_packed_mask=medusa_packed_mask)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class LLaMAForCausalLM(DecoderModelForCausalLM, TopModelMixin):
def __init__(self, config: PretrainedConfig):
self.check_config(config)
transformer = LLaMAModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
def check_config(self, config):
config.set_if_not_exist('mlp_bias', False)
config.set_if_not_exist('attn_bias', False)
config.set_if_not_exist('rotary_base', 10000.0)
config.set_if_not_exist('rotary_scaling', None)
config.set_if_not_exist('enable_pos_shift', False)
config.set_if_not_exist('dense_context_fmha', False)
config.set_if_not_exist('moe_num_experts', 0)
config.set_if_not_exist('moe_top_k', 0)
config.set_if_not_exist('moe_tp_mode',
MoeConfig.ParallelismMode.TENSOR_PARALLEL)
config.set_if_not_exist(
'moe_normalization_mode',
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)
@classmethod
def from_hugging_face(cls,
hf_model_dir,
dtype='float16',
mapping: Optional[Mapping] = None,
quant_mode: Optional[QuantMode] = None,
**kwargs):
cfg = AutoConfig.from_pretrained(hf_model_dir)
num_kv_heads = cfg.num_key_value_heads if hasattr(cfg, "num_key_value_heads") \
else cfg.num_attention_heads
if mapping is None:
mapping = Mapping()
if quant_mode is None:
quant_mode = QuantMode(0)
cfg.mapping = mapping
cfg.dtype = dtype
cfg.quant_mode = quant_mode
cfg.norm_epsilon = cfg.rms_norm_eps
if cfg.model_type == 'mixtral':
moe_config = MoeConfig(
num_experts=cfg.num_local_experts,
top_k=cfg.num_experts_per_tok,
tp_mode=kwargs.get("moe_tp_mode",
MoeConfig.ParallelismMode.TENSOR_PARALLEL),
normalization_mode=kwargs.get(
"moe_normalization_mode",
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE),
).validate()
# HF LLaMA-type models are implicitly using gated activation.
# With our MoE implementation, we must make it explicit
cfg.hidden_act = 'swiglu'
cfg.rotary_base = cfg.rope_theta
else:
moe_config = MoeConfig()
config = {
'architecture': cfg.architectures[0],
'dtype': cfg.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': cfg.num_hidden_layers,
'num_attention_heads': cfg.num_attention_heads,
'hidden_size': cfg.hidden_size,
'intermediate_size': cfg.intermediate_size,
'num_key_value_heads': cfg.num_key_value_heads,
'vocab_size': cfg.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': cfg.max_position_embeddings,
'hidden_act': cfg.hidden_act,
'rotary_base': getattr(cfg, 'rotary_base', 10000.0),
'rotary_scaling': getattr(cfg, 'rotary_scaling', None),
'norm_epsilon': cfg.rms_norm_eps,
'quantization': {
'group_size': 128,
},
'mapping': {
'world_size': mapping.world_size,
'tp_size': mapping.tp_size,
'pp_size': mapping.pp_size,
},
"moe_config": {
"num_experts": moe_config.num_experts,
"top_k": moe_config.top_k,
"tp_mode": moe_config.tp_mode,
"normalization_mode": moe_config.normalization_mode,
},
'use_parallel_embedding': kwargs.get("use_parallel_embedding",
False),
'embedding_sharding_dim': kwargs.get("embedding_sharding_dim", 0),
'use_prompt_tuning': kwargs.get("use_prompt_tuning", False),
'moe_num_experts': moe_config.num_experts,
'moe_top_k': moe_config.top_k,
'moe_tp_mode': moe_config.tp_mode,
'moe_normalization_mode': moe_config.normalization_mode,
'use_fused_mlp': kwargs.get("use_fused_mlp", False),
'enable_pos_shift': kwargs.get("enable_pos_shift", False),
'dense_context_fmha': kwargs.get("dense_context_fmha", False),
}
if quant_mode.is_int4_weight_only_per_group():
config['quantization'].update({
'quant_algo': 'W4A16_AWQ',
'has_zero_point': False,
'pre_quant_scale': True,
'exclude_modules': [],
})
elif quant_mode.has_fp8_qdq() and quant_mode.has_fp8_kv_cache():
config['quantization'].update({
'quant_algo': 'FP8',
'kv_cache_quant_algo': 'FP8'
})
else:
if quant_mode != QuantMode(0):
raise ValueError(f"Unsupported quantization mode: {quant_mode}")
model_config = PretrainedConfig.from_dict(config)
model_config.set_rank(mapping.tp_rank)
tllm_llama = LLaMAForCausalLM(model_config)
q_weights = {}
if quant_mode.has_any_quant():
q_weights = tllm_llama._quantize(hf_model_dir, dtype, cfg, **kwargs)
# For debug purpose, skip weights loading to be faster
if kwargs.get("skip_loading_weights", False):
return tllm_llama
# weights already loaded in _quantize for int4 weight only
if not quant_mode.is_int4_weight_only_per_group():
profiler.start("Loading weights from HF")
hf_llama = AutoModelForCausalLM.from_pretrained(
hf_model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu",
"embed_tokens": "cpu",
"layers": "cpu",
"norm": "cpu",
}, # Load to CPU memory
torch_dtype='auto',
)
weights = load_from_hf_llama(
tllm_llama,
hf_llama,
mapping=mapping,
dtype=dtype,
# TODO: these shall be outside from_hugging_face too.
use_gemm_woq_plugin=kwargs.get("use_gemm_woq_plugin", False),
lora_config=kwargs.get("lora_config", LoraConfig()),
)
profiler.stop("Loading weights from HF")
del hf_llama
weights.update(q_weights)
tllm_llama.load(weights)
else:
tllm_llama.load(q_weights)
return tllm_llama
def _quantize(self, hf_model_dir, dtype, cfg, **kwargs):
'''Given the quant_mode set in the Module object, read from given hf model
call AMMO to generate quantization scales, and set the scales back the module parameters.
'''
# use self destructed temporary path if kwargs[quantization_cache_dir] is not specified
# sometimes the quantization checkpoint path needs to be saved for debug purpose
quantized_temp_dir = tempfile.TemporaryDirectory("llama-quantized")
quantized_checkpoint_path = kwargs.get("quantization_cache_dir",
quantized_temp_dir.name)
quantize_lm_head = kwargs.get("quantize_lm_head", False)
quant_mode = cfg.quant_mode
ammo_qformat = None
calib_size = None
if quant_mode.has_fp8_qdq() or quant_mode.has_fp8_kv_cache():
ammo_qformat = 'fp8'
calib_size = 512
# TODO: how to distinguish from quant_mode about int4_awq or int4_gptq?
elif quant_mode.is_int4_weight_only_per_group():
ammo_qformat = 'int4_awq'
calib_size = 32
assert ammo_qformat is not None
# local import to avoid pytest issue when importing AMMO and transformers lib
from .quantize import quantize_llama_and_export
quantize_llama_and_export(hf_model_dir,
quantized_checkpoint_path,
ammo_qformat,
dtype,
calib_size=calib_size,
quantize_lm_head=quantize_lm_head)
ckpt = Path(quantized_checkpoint_path) / "llama_tp1_rank0.npz"
assert ckpt.exists(), f"The expecting checkpoint path {ckpt} does not exist" \
"it's likely quantization failed, pls check error logs"
hf_config = AutoConfig.from_pretrained(hf_model_dir,
trust_remote_code=True)
if ammo_qformat == 'fp8':
return load_from_fp8_llama(
str(ckpt),
hf_config.num_hidden_layers,
cfg.mapping,
fp8_kv_cache=quant_mode.has_fp8_kv_cache())
else:
return load_from_awq_llama(str(ckpt),
hf_config.num_hidden_layers,
hf_config.vocab_size,
cfg.mapping,
dtype=dtype)
# llama specific setters, user shall has the chance to change the module attributes after
# from_hugging_face factory method created the model when these attributes is not included in the huggingface checkpoint
def rotary_base(self, val):
for decoder in self.layers:
decoder.attention.rotary_embedding_base = val
return self
def rotary_scaling(self, scaling_type, factor):
# TODO: what if there are some other behaviors triggered by the these changes?
# should implement these assignment as setters of the Attention Module
assert scaling_type in ("linear", "dynamic"), f"Got {scaling_type}"
assert factor > 1.0, f"Got {factor}"
for decoder in self.layers:
decoder.attention.rotary_embedding_scale_type = RotaryScalingType.linear if scaling_type == "linear" else RotaryScalingType.dynamic
decoder.attention.rotary_embedding_scale = factor
return self
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.set_weight_only_groupwise_quant_matmul_plugin()
return plugin_config