TensorRT-LLMs/cpp/tensorrt_llm/kernels/weightOnlyBatchedGemv/common.h
2024-03-19 17:36:42 +08:00

102 lines
3.4 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <iostream>
namespace tensorrt_llm
{
namespace kernels
{
namespace weight_only
{
enum class KernelType
{
FP16Int4Groupwise,
BF16Int4Groupwise,
FP16Int8PerChannel,
BF16Int8PerChannel,
FP16Int4PerChannel,
BF16Int4PerChannel
};
template <KernelType KT>
struct kernel_type_traits;
#define KERNEL_TYPE_TRAITS_REGISTRY(KT, _isGroupwise, _isInt4) \
template <> \
struct kernel_type_traits<KT> \
{ \
static constexpr bool isGroupwise = _isGroupwise; \
static constexpr bool isInt4 = _isInt4; \
};
KERNEL_TYPE_TRAITS_REGISTRY(KernelType::FP16Int4Groupwise, true, true);
KERNEL_TYPE_TRAITS_REGISTRY(KernelType::BF16Int4Groupwise, true, true);
KERNEL_TYPE_TRAITS_REGISTRY(KernelType::FP16Int8PerChannel, false, false);
KERNEL_TYPE_TRAITS_REGISTRY(KernelType::BF16Int8PerChannel, false, false);
KERNEL_TYPE_TRAITS_REGISTRY(KernelType::FP16Int4PerChannel, false, true);
KERNEL_TYPE_TRAITS_REGISTRY(KernelType::BF16Int4PerChannel, false, true);
#undef KERNEL_TYPE_TRAITS_REGISTRY
struct Params
{
using Pointer = void*;
using ConstPointer = void const*;
Pointer act;
Pointer act_scale;
Pointer weight;
Pointer scales;
Pointer zeros;
Pointer bias;
Pointer out;
float alpha;
int m;
int n;
int k;
int groupsize;
KernelType type;
bool apply_alpha_in_advance;
Params(ConstPointer _act, ConstPointer _act_scale, ConstPointer _weight, ConstPointer _scales, ConstPointer _zeros,
ConstPointer _bias, Pointer _out, float _alpha, int _m, int _n, int _k, int _groupsize, KernelType _type,
bool _apply_alpha_in_advance = false)
: act(const_cast<Pointer>(_act))
, act_scale(const_cast<Pointer>(_act_scale))
, weight(const_cast<Pointer>(_weight))
, scales(const_cast<Pointer>(_scales))
, zeros(const_cast<Pointer>(_zeros))
, bias(const_cast<Pointer>(_bias))
, out(_out)
, alpha(_alpha)
, m(_m)
, n(_n)
, k(_k)
, groupsize(_groupsize)
, type(_type)
, apply_alpha_in_advance(_apply_alpha_in_advance)
{
}
};
} // namespace weight_only
} // namespace kernels
} // namespace tensorrt_llm