TensorRT-LLMs/examples/model_api/llama.py
2024-03-19 17:36:42 +08:00

62 lines
1.8 KiB
Python

import argparse
import os
from pathlib import Path
from tensorrt_llm.executor import GenerationExecutor
from tensorrt_llm.models import LLaMAForCausalLM
def read_input():
while (True):
input_text = input("<")
if input_text in ("q", "quit"):
break
yield input_text
def parse_args():
parser = argparse.ArgumentParser(description="Llama single model example")
parser.add_argument(
"--engine_dir",
type=Path,
required=True,
help=
"Directory to save and load the engine. When -c is specified, always rebuild and save to this dir. When -c is not specified, load engine when the engine_dir exists, rebuild otherwise"
)
parser.add_argument(
"--hf_model_dir",
type=str,
required=True,
help="Read the model data and tokenizer from this directory")
parser.add_argument(
"-c",
"--clean_build",
default=False,
action="store_true",
help=
"Clean build the engine even if the engine_dir exists, be careful, this overwrites the engine_dir!!"
)
return parser.parse_args()
def main():
args = parse_args()
tokenizer_dir = args.hf_model_dir
max_batch_size, max_isl, max_osl = 1, 256, 20
if args.clean_build or not args.engine_dir.exists():
args.engine_dir.mkdir(exist_ok=True, parents=True)
os.makedirs(args.engine_dir, exist_ok=True)
llama = LLaMAForCausalLM.from_hugging_face(args.hf_model_dir)
llama.to_trt(max_batch_size, max_isl, max_osl)
llama.save(str(args.engine_dir))
executor = GenerationExecutor.create(args.engine_dir, tokenizer_dir)
for inp in read_input():
output = executor.generate(inp, max_new_tokens=20)
print(f">{output.text}")
main()