TensorRT-LLMs/tensorrt_llm/hlapi/llm.py
2024-03-19 17:36:42 +08:00

953 lines
37 KiB
Python

import json
import os
import shutil
import tempfile
import time
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Union
import tensorrt as trt
import torch
from .. import bindings as tllm
from .._utils import mpi_rank, release_gc
from ..auto_parallel.config import AutoParallelConfig, infer_cluster_key
from ..bindings import KvCacheConfig, SchedulerPolicy
from ..builder import (BuildConfig, Engine, EngineConfig, PluginConfig,
QuantMode, build)
from ..executor import GenerationExecutor, GenerationResult
from ..logger import logger
from ..mapping import Mapping
from ..models.modeling_utils import PretrainedConfig
from ..module import Module
from ..runtime import SamplingConfig
from .mpi_session import MPINodeState, MpiSession
from .tokenizer import TokenizerBase, TransformersTokenizer
from .utils import (GenerationOutput, file_with_suffix_exists, get_device_count,
print_colored, print_traceback_on_error)
@dataclass
class ParallelConfig:
''' The model distribution configs for LLM. '''
tp_size: int = 1
pp_size: int = 1
world_size: int = 1
devices: List[int] = field(default_factory=list)
auto_parallel: bool = False
def get_devices(self) -> List[int]:
''' Get the devices for the model. '''
return self.devices if self.devices else list(range(self.tp_size))
class QuantConfig:
def __init__(self,
quant_mode: Optional[QuantMode] = None,
quantize_lm_head: bool = False):
self._quant_mode = quant_mode or QuantMode(0)
self.quantize_lm_head = quantize_lm_head
@property
def quant_mode(self) -> QuantMode:
return self._quant_mode
def set_int8_kv_cache(self):
self._quant_mode = self._quant_mode.set_int8_kv_cache()
def set_fp8_kv_cache(self):
self._quant_mode = self._quant_mode.set_fp8_kv_cache()
def set_fp8_qdq(self):
self._quant_mode = self._quant_mode.set_fp8_qdq()
def init_from_description(self,
quantize_weights=False,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=False,
use_int4_weights=False,
use_int8_kv_cache=False,
use_fp8_kv_cache=False,
use_fp8_qdq=False):
self._quant_mode = QuantMode.from_description(
quantize_weights=quantize_weights,
quantize_activations=quantize_activations,
per_token=per_token,
per_channel=per_channel,
per_group=per_group,
use_int4_weights=use_int4_weights,
use_int8_kv_cache=use_int8_kv_cache,
use_fp8_kv_cache=use_fp8_kv_cache,
use_fp8_qdq=use_fp8_qdq)
def __getattribute__(self, name: str) -> Any:
def dummy_getter(*args, **kwargs):
return getattr(self.quant_mode, name)(*args, **kwargs)
if name.startswith('has_'):
return dummy_getter
return super().__getattribute__(name)
@dataclass
class ModelConfig:
# ``model_dir`` helps to locate a local model, the format of the model is determined by the model file itself.
# Either HF model, TensorRT-LLM checkpoints or TensorRT-LLM engine format is supported.
model_dir: Optional[str] = None
# ``model`` could either the model directory or a in-memory model.
# If ``model`` specifies the model kind like "llama-7B", etc. The model will be download automatically from third-party
# model hub like www.modelscope.cn or huggingface
model: Optional[Union[str, Module]] = None
parallel_config: ParallelConfig = field(default_factory=ParallelConfig)
quant_config: QuantConfig = field(default_factory=lambda: QuantConfig())
# Switch the optimization on multi-head attention optimization for long context decoding.
multi_block_mode: bool = False
# The maximum beam width for beam search.
max_beam_width: int = 1
# Overwrite the underlying plugin config. Default values will be used if it's None.
plugin_config: Union[PluginConfig, Dict[str, Any], None] = None
@property
def is_multi_gpu(self) -> bool:
if self.parallel_config.auto_parallel:
return self.parallel_config.world_size > 1
else:
return self.parallel_config.tp_size > 1 or self.parallel_config.pp_size > 1
@property
def world_size(self) -> bool:
if self.parallel_config.auto_parallel:
if self.parallel_config.tp_size > 1 or self.parallel_config.pp_size > 1:
raise RuntimeError(
"manually TP and PP are not supported in auto parallel mode."
)
return self.parallel_config.world_size
else:
if self.parallel_config.world_size > 1:
raise RuntimeError(
"world_size > 1 is only supported in auto parallel mode.")
return self.parallel_config.tp_size * self.parallel_config.pp_size
# TODO[chunweiy]: To support loading options from the engine config
def __post_init__(self):
assert self.model_dir, "model_dir is required."
if self.model:
raise NotImplementedError("model is not supported yet.")
# TODO[chunweiy]: unify the model_dir to Path
if self.model_dir is not None and not Path.exists(Path(self.model_dir)):
raise ValueError(
f"model_dir of path {self.model_dir} does not exist.")
# Load parallel_config from the engine.
if ModelLoader.get_model_format(
self.model_dir) is _ModelFormatKind.TLLM_ENGINE:
with open(Path(self.model_dir) / "config.json", "r") as f:
engine_config = json.load(f)
# TODO[chunweiy]: Remove the following if-check after the engine config is unified.
if "pretrained_config" in engine_config:
mapping = engine_config["pretrained_config"]["mapping"]
if self.parallel_config.tp_size != 1 and self.parallel_config.tp_size != mapping[
"tp_size"]:
logger.warning(
f"tp_size {self.parallel_config.tp_size} is not consistent with the engine's tp_size {mapping['tp_size']}"
)
if self.parallel_config.pp_size != 1 and self.parallel_config.pp_size != mapping[
"pp_size"]:
logger.warning(
f"pp_size {self.parallel_config.pp_size} is not consistent with the engine's pp_size {mapping['pp_size']}"
)
self.parallel_config = ParallelConfig(
tp_size=mapping["tp_size"],
pp_size=mapping["pp_size"],
)
def _update_plugin_config(self, key: str, value: Any):
if key == 'use_paged_context_fmha' and value is True:
devices = self.parallel_config.get_devices()
assert torch.cuda.get_device_properties(
devices[0]
).major >= 8, "Paged context is only supported on post Volta GPUs"
if self.plugin_config is None:
self.plugin_config = {}
if isinstance(self.plugin_config, PluginConfig):
setattr(self.plugin_config, key, value)
elif isinstance(self.plugin_config, dict):
self.plugin_config[key] = value
class DecodingMode(Enum):
''' The decoding mode for the generation. Just a Pythonic wrapper for the C++ one. '''
none = 0
top_k = 1
top_p = 2
top_k_top_p = 3
beam_search = 4
def to_cpp(self):
values = {
DecodingMode.none.value: tllm.DecodingMode.none(),
DecodingMode.top_k.value: tllm.DecodingMode.top_k(),
DecodingMode.top_p.value: tllm.DecodingMode.top_p(),
DecodingMode.top_k_top_p.value: tllm.DecodingMode.top_k_top_p(),
DecodingMode.beam_search.value: tllm.DecodingMode.beam_search(),
}
return values[self.value]
class LLM:
'''
An end-to-end runner for LLM tasks.
Classical usage:
config = ModelConfig(<model-path>)
llm = LLM(config)
llm.generate(["What is your name?"]) # => ["My name is Llama."]
'''
def __init__(self,
config: ModelConfig,
tokenizer: Optional[TokenizerBase] = None,
kv_cache_config: Optional[KvCacheConfig] = None,
enable_trt_overlap: bool = False,
normalize_log_probs: bool = False,
enable_chunked_context: bool = False,
decoding_mode: Optional[DecodingMode] = None,
scheduling_policy: SchedulerPolicy = SchedulerPolicy.
GUARANTEED_NO_EVICT,
async_engine_tmp_dir: Optional[str] = None):
'''
Args:
config: The model config for the model.
tokenizer: User provided tokenizer, will override the default one if exists in the HF model or TRT-LLM engine.
kv_cache_config: The config for the paged KV cache.
enable_trt_overlap: When set to true, GptManager partitions available requests into 2 'microbatches' that can be run concurrently to hide exposed CPU runtime.
However, it may not give performance benefits when the size of the model is not big enough to overlap the host overhead, or when the number of requests is too small.
normalize_log_probs: When set to true, the log probabilities are normalized to avoid numerical issues.
enable_chunked_context: Controls whether to do chunked decoding.
decoding_mode: The decoding mode for the generation.
scheduling_policy: The scheduling policy for the generation.
async_engine_tmp_dir: The temporary directory to save the async engine. Only for debugging.
'''
self.config = config
self._tokenizer = tokenizer
self.async_engine_tmp_dir = async_engine_tmp_dir
self.kv_cache_config = kv_cache_config
self.enable_trt_overlap = enable_trt_overlap
self.normalize_log_probs = normalize_log_probs
self.enable_chunked_context = enable_chunked_context
self.decoding_mode = decoding_mode
self.scheduling_policy = scheduling_policy
self.mpi_session = None
# TODO[chunweiy]: Support more models and gpus
self._extra_build_config = ModelLoader.load_extra_build_configs_from_engine(
self.config.model_dir)
if not self._extra_build_config:
self._extra_build_config = ModelLoader.get_extra_build_configs(
'llama7b', 'a100')
self.mpi_session = None
if self.config.is_multi_gpu:
if get_device_count() < self.config.world_size:
raise RuntimeError(
f"Only {get_device_count()} GPUs are available, but {self.config.world_size} are required."
)
logger.info(
f'start MpiSession with {self.config.world_size} workers')
self.mpi_session = MpiSession(n_workers=self.config.world_size)
# Due to the gptManager can only accept a engine path, we need to save the engine to a directory
self._engine_dir: Union[tempfile.TemporaryDirectory, str, Path,
None] = None
self._executor: Optional[GenerationExecutor] = None
self.runtime_context: Optional[_ModelRuntimeContext] = None
# Update the plugin config if necessary
if self.kv_cache_config is not None:
if self.kv_cache_config.enable_block_reuse:
logger.info(
f"Turn on `use_paged_context_fmha` due to enable_block_reuse"
)
self.config._update_plugin_config("use_paged_context_fmha",
True)
self._build_model()
def generate(
self,
prompts: Union[Iterable[str], Iterable[List[int]]],
sampling_config: Optional[SamplingConfig] = None
) -> Iterable[GenerationOutput]:
''' Generate the output for the given inputs.
Args:
prompts: The raw text or token ids to the model.
sampling_config: The sampling config for the generation, a default one will be used if not provided.
'''
prompts = list(prompts)
if sampling_config is None:
sampling_config = self.get_default_sampling_config()
self._generate_check_arguments(prompts, sampling_config)
results = self._executor.generate(
prompts,
max_new_tokens=sampling_config.max_new_tokens,
end_id=sampling_config.end_id,
pad_id=sampling_config.pad_id)
return results
def generate_async(self,
prompt: Union[str, List[int]],
sampling_config: Optional[SamplingConfig] = None,
streaming: bool = False) -> GenerationResult:
''' Generate in asynchronuous mode.
Args:
prompt: The raw text or token ids to the model.
sampling_config: The sampling config for the generation, a default one will be used if not provided.
streaming: Whether to use the streaming mode for the generation.
'''
if sampling_config is None:
sampling_config = self.get_default_sampling_config()
self._generate_check_arguments([prompt], sampling_config)
results = self._executor.generate_async(
prompt,
streaming=streaming,
# TODO[chunweiy]: make executor support all the options in SamplingConfig
max_new_tokens=sampling_config.max_new_tokens,
end_id=sampling_config.end_id,
pad_id=sampling_config.pad_id)
return results
def _generate_check_arguments(self, prompts, sampling_config):
if sampling_config is None:
raise ValueError("The sampling_config should to be provided.")
if sampling_config.num_beams > self.config.max_beam_width:
raise ValueError(
f"num_beams is larger than the maximum in the built engine {sampling_config.num_beams} > {self.config.max_beam_width}"
)
if len(prompts) > self._extra_build_config.max_batch_size:
raise ValueError(
f"Batch size {len(prompts)} is larger than the maximum in the built engine {self._extra_build_config.max_batch_size}"
)
input_digits = False
if isinstance(prompts[0], list):
input_digits = True
if input_digits and sum(len(prompt) for prompt in prompts
) > self._extra_build_config.max_num_tokens:
raise ValueError(f"The total input length is too large")
if self.decoding_mode is DecodingMode.beam_search and sampling_config.num_beams < 1:
raise ValueError(
f"num_beams should be no less than 1 for beam search, but get {sampling_config.num_beams}"
)
@property
def tokenizer(self) -> TokenizerBase:
if self._tokenizer is not None:
return self._tokenizer
if self.runtime_context is not None:
return self.runtime_context.tokenizer
def save(self, engine_dir: str):
''' Save the built engine to the given path. '''
logger.info(f"Save model to {engine_dir}")
assert self._engine_dir is not None, "The engine is not built yet."
src_engine_dir = self._engine_dir.name if isinstance(
self._engine_dir, tempfile.TemporaryDirectory) else self._engine_dir
if src_engine_dir != engine_dir:
shutil.copytree(src_engine_dir, engine_dir, dirs_exist_ok=True)
def shutdown(self):
if self._executor is not None:
self._executor.shutdown()
if self.mpi_session is not None:
self.mpi_session.shutdown()
self.mpi_session = None
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback) -> bool:
del exc_value, traceback
self.shutdown()
return exc_type is not None
def _save_engine(self, engine_dir: str):
logger.info(f"Save model to {engine_dir}")
if self.config.is_multi_gpu:
if self._executor is not None:
self._executor.shutdown()
self.mpi_session.submit_sync(LLM._node_save_task, engine_dir,
self.config.model_dir)
else:
ModelLoader.save(self.runtime_context,
self.config.model_dir,
engine_dir=engine_dir,
model_info=self.runtime_context.model_info)
def get_default_sampling_config(self) -> Optional[SamplingConfig]:
''' Get the default sampling config for the model.
You can override the options.
'''
tokenizer = self.tokenizer
if tokenizer is None:
try:
tokenizer = ModelLoader.load_hf_tokenizer(self.config.model_dir)
except:
return None
return SamplingConfig(
end_id=tokenizer.eos_token_id,
pad_id=tokenizer.eos_token_id
if tokenizer.pad_token_id is None else tokenizer.pad_token_id,
output_sequence_lengths=True,
return_dict=True)
def _build_model(self):
model_format = ModelLoader.get_model_format(self.config.model_dir)
self._engine_dir = self.config.model_dir
def get_engine_dir():
return self._engine_dir.name if isinstance(
self._engine_dir,
tempfile.TemporaryDirectory) else self._engine_dir
if model_format is not _ModelFormatKind.TLLM_ENGINE:
if self._executor is not None:
self._executor.shutdown()
self._engine_dir = self.async_engine_tmp_dir
if self._engine_dir is None:
self._engine_dir = tempfile.TemporaryDirectory()
if self.config.is_multi_gpu:
self.mpi_session.submit_sync(
LLM._node_build_task,
self.config,
self._tokenizer,
)
self._save_engine(get_engine_dir())
self.mpi_session.submit_sync(LLM._node_free_state_task)
else:
with ModelLoader(self.config,
tokenizer=self._tokenizer) as model_loader:
runtime_context = model_loader()
# TODO[chunweiy]: Make GptManager support in-memory engine-buffer to save disk loading latency
ModelLoader.save(runtime_context,
self.config.model_dir,
engine_dir=get_engine_dir(),
model_info=runtime_context.model_info)
# Once saved, the engine_buffer is not needed anymore
del runtime_context
release_gc()
tokenizer = self.tokenizer
if not isinstance(tokenizer, TokenizerBase):
tokenizer = ModelLoader.load_hf_tokenizer(self.config.model_dir)
executor_config = tllm.TrtGptModelOptionalParams()
if self.kv_cache_config is not None:
executor_config.kv_cache_config = self.kv_cache_config
executor_config.enable_trt_overlap = self.enable_trt_overlap
executor_config.normalize_log_probs = self.normalize_log_probs
executor_config.enable_chunked_context = self.enable_chunked_context
executor_config.decoding_mode = self.decoding_mode.to_cpp(
) if self.decoding_mode else None
self._executor = GenerationExecutor.create(
get_engine_dir(),
tokenizer,
max_beam_width=self.config.max_beam_width,
executor_config=executor_config,
executor_policy=self.scheduling_policy,
model_world_size=self.config.world_size,
mpi_session=self.mpi_session)
@print_traceback_on_error
@staticmethod
def _node_build_task(config: ModelConfig,
tokenizer: TokenizerBase = None) -> bool:
assert not MPINodeState.is_initialized()
with ModelLoader(config, tokenizer=tokenizer) as model_loader:
runtime_context = model_loader()
# Hold the model builder for later use
MPINodeState.state = runtime_context
return True
@print_traceback_on_error
@staticmethod
def _node_save_task(engine_dir: str, model_dir: str):
runtime_context: _ModelRuntimeContext = MPINodeState.state
assert isinstance(runtime_context,
_ModelRuntimeContext), "Model is not built yet."
ModelLoader.save(runtime_context,
model_dir,
engine_dir=engine_dir,
model_info=runtime_context.model_info)
@print_traceback_on_error
@staticmethod
def _node_free_state_task():
MPINodeState.state = None
# release the large resource explicitly and immediately, since the following LLM pipeline may need a lot of memory
release_gc()
def __getstate__(self):
raise RuntimeError("LLM object can not be pickled.")
def __del__(self):
self.shutdown()
class _ModelFormatKind(Enum):
HF = 0
TLLM_CKPT = 1
TLLM_ENGINE = 2
@dataclass
class _ModelInfo:
dtype: Optional[str] = None
architecture: Optional[str] = None
@property
def model_name(self) -> str:
assert self.architecture is not None, "The architecture is not set yet."
return self.architecture
@classmethod
def from_pretrained_config(cls, config: PretrainedConfig):
return cls(dtype=config.dtype, architecture=config.architecture)
@classmethod
def from_builder_config_json(cls, config: dict):
if 'version' in config:
# The Dict format is { 'builder_config':..., 'plugin_config':...}
dtype = config['plugin_config']['gpt_attention_plugin']
else:
dtype = config['pretrained_config']['dtype']
return cls(dtype=dtype, architecture=config['builder_config']['name'])
@classmethod
def from_module(cls, module: Module):
raise NotImplementedError()
@dataclass
class _ModelRuntimeContext:
''' _ModelRuntimeContext holds the minimum runtime resources for running a model.
It could be a runtime cache in MPI nodes.
'''
engine_buffer: Optional[trt.IHostMemory] = None
tokenizer: Optional[TokenizerBase] = None
# engine_config is only used for saving the engine to disk
engine_config: Optional[Union[dict, EngineConfig]] = None
mapping: Optional[Mapping] = None
model_info: Optional[_ModelInfo] = None
@property
def engine(self) -> trt.IHostMemory:
assert self.engine_buffer is not None
return self.engine_buffer
@property
def model_structure(self) -> str:
# "LlaMACausalForLM" or "OPTForCausalLM" and so on
return self.engine_config.pretrained_config['architecture']
class ModelLoader:
''' The ModelLoader is used to build an end-to-end model from a model config.
It will construct the runtime resources including engine, tokenizer, model runner etc for a single gpu.
'''
def __init__(self, config: ModelConfig, tokenizer: Optional[TokenizerBase]):
self.config = config
self.tokenizer = tokenizer
self.rank = mpi_rank() if config.is_multi_gpu else 0
if not config.is_multi_gpu:
self.mapping = Mapping()
elif config.parallel_config.auto_parallel:
self.mapping = Mapping()
self.mapping.rank = self.rank
else:
self.mapping = Mapping(
tp_size=config.parallel_config.tp_size,
pp_size=config.parallel_config.pp_size,
rank=self.rank,
world_size=config.world_size,
)
self._model_pipeline = []
self._model_dir = self.config.model_dir
self._model_info: Optional[_ModelInfo] = None
self._model_name = self.config.model
# TODO[chunweiy]: Support more models and gpus
self._extra_build_config = ModelLoader.get_extra_build_configs(
'llama7b', 'h100')
self.auto_parallel_config = AutoParallelConfig(
world_size=config.parallel_config.world_size)
default_config = self._extra_build_config.auto_parallel_config
self.auto_parallel_config.set_defaults(
cluster_key=default_config.cluster_key,
same_buffer_io=default_config.same_buffer_io,
sharded_io_allowlist=default_config.sharded_io_allowlist,
)
# Prepare the model processing pipeline
if isinstance(self.config.model, Module):
''' Build engine from user provided model '''
self._model_pipeline.append(
("Build TensorRT-LLM engine",
self._build_engine_from_inmemory_model))
return
if self.config.model_dir is None:
''' Download HF model if necessary '''
# TODO[chunweiy]: Support HF model download
raise NotImplementedError()
assert self._model_dir is not None, "The model_dir is not set yet."
self._model_format = ModelLoader.get_model_format(self._model_dir)
if self._model_format is _ModelFormatKind.HF:
''' HF -> TFRT checkpoints -> engine '''
self._model_pipeline.append(
("Load HF model to memory", self._load_model_from_hf))
self._model_pipeline.append(
("Build TRT-LLM engine", self._build_engine))
elif self._model_format is _ModelFormatKind.TLLM_CKPT:
''' TFRT checkpoints -> engine '''
# TODO[chunweiy]: Support checkpoints when quantization is ready
raise NotImplementedError()
elif self._model_format is _ModelFormatKind.TLLM_ENGINE:
''' TFRT engine '''
self._model_pipeline.append(
("Load TensorRT-LLM engine", self._load_engine_buffer))
else:
raise ValueError(f"Unknown model format {self._model_format}")
if self.tokenizer is None:
''' Use the default tokenizer if no one is provided. '''
self._model_pipeline.append(
("Initialize tokenizer", self._load_hf_tokenizer))
def __call__(self) -> _ModelRuntimeContext:
if self.config.is_multi_gpu:
torch.cuda.set_device(self.rank)
n_steps = len(self._model_pipeline)
to_log = self.rank == 0
overall_start_time = time.time()
for off, (info, step) in enumerate(self._model_pipeline):
if to_log:
print_colored("Loading Model: ")
print_colored(f"[{off+1}/{n_steps}]\t", 'bold_green')
print_colored(f"{info}\n")
start_time = time.time()
step()
latency = time.time() - start_time
if to_log:
print_colored("Time: {:.3f}s\n".format(latency), 'grey')
overall_latency = time.time() - overall_start_time
if to_log:
print_colored("Loading model done.\n", 'bold_green')
print_colored('Total latency: {:.3f}s\n'.format(overall_latency),
'grey')
assert self._engine_buffer is not None, "The engine is not built yet."
assert hasattr(self, '_engine_config'), "config is not loaded."
config = self._engine_config
return _ModelRuntimeContext(
tokenizer=self.tokenizer,
engine_buffer=self._engine_buffer,
engine_config=config,
mapping=self.mapping,
model_info=self._model_info,
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
for attr_name in dir(self):
if not callable(getattr(
self, attr_name)) and not attr_name.startswith("__"):
if attr_name not in ('model_format', ):
setattr(self, attr_name, None)
release_gc()
@property
def model_format(self) -> _ModelFormatKind:
return self._model_format
# TODO[tali]: Replace this with a lower-level API
@staticmethod
def save(
model: _ModelRuntimeContext,
model_dir: str,
engine_dir: str,
model_info: _ModelInfo,
):
''' Save the built engine on a single GPU to the given path. '''
mapping = model.mapping
rank = mapping.rank
def copy_hf_tokenizer_data_to_engine_dir():
# Copy the HF tokenizer stuff to the engine dir so that we can use the engine dir as a standalone model dir supports end-to-end task.
# This is only for HF model for now, not available for users' customized tokenizers.
import shutil
for name in os.listdir(model_dir):
src = os.path.join(model_dir, name)
dst = os.path.join(engine_dir, name)
if name.startswith('tokenizer'):
if os.path.isdir(src):
shutil.copytree(src, dst, dirs_exist_ok=True)
else:
shutil.copy2(src, dst)
engine = Engine(config=model.engine_config, engine=model.engine)
engine.save(engine_dir)
if rank == 0 and isinstance(model.tokenizer, TransformersTokenizer):
copy_hf_tokenizer_data_to_engine_dir()
@staticmethod
def get_model_format(model_dir: str) -> _ModelFormatKind:
''' Get the format of the model. '''
# TODO[chunweiy]: Add checkpoint support
if (Path.exists(Path(model_dir) / 'generation_config.json')
and (file_with_suffix_exists(model_dir, '.bin')
or file_with_suffix_exists(model_dir, '.safetensors'))):
return _ModelFormatKind.HF
if Path.exists(
Path(model_dir) / 'config.json') and file_with_suffix_exists(
model_dir, '.engine'):
return _ModelFormatKind.TLLM_ENGINE
raise ValueError(f"Unknown model format for {model_dir}")
def _download_hf_model(self):
''' Download HF model from third-party model hub like www.modelscope.cn or huggingface. '''
raise NotImplementedError()
def _load_model_from_hf(self):
''' Build a TRT-LLM model from a HF model. '''
from ..models import LLaMAForCausalLM
assert self._model_dir is not None
import transformers
_pretrained_config = transformers.PretrainedConfig.from_json_file(
os.path.join(self._model_dir, 'config.json'))
# TODO[chunweiy]: inspect from hf model/config
model_arch = _pretrained_config.architectures[0]
# TODO[chunweiy]: add more models if ready
model2struct = dict(
LlamaForCausalLM=LLaMAForCausalLM,
MixtralForCausalLM=LLaMAForCausalLM,
)
if model_arch not in model2struct:
raise KeyError(
f"Unsupported model architecture: {model_arch}, "
f"only {', '.join(model2struct.keys())} are supported now.")
self.model = model2struct[model_arch].from_hugging_face(
self._model_dir,
mapping=self.mapping,
quant_mode=self.config.quant_config.quant_mode,
quantize_lm_head=self.config.quant_config.quantize_lm_head,
load_model_on_cpu=
True, # TODO:TRTLLM-195 to enhance the weights loading memory usage and chose best location
)
self.pretrained_config = self.model.config
self._model_info = _ModelInfo.from_pretrained_config(
self.pretrained_config)
def _build_engine_from_inmemory_model(self):
assert isinstance(self.config.model, Module)
self.model = self.config.model.from_hugging_face(
self._model_dir,
mapping=self.mapping,
quant_mode=self.config.quant_config.quant_mode,
quantize_lm_head=self.config.quant_config.quantize_lm_head,
)
self._model_info = _ModelInfo.from_module(self.model)
def _build_engine(self):
max_input_len = self._extra_build_config.max_input_len
max_output_len = self._extra_build_config.max_output_len
max_batch_size = self._extra_build_config.max_batch_size
max_beam_width = self.config.max_beam_width
max_num_tokens = self._extra_build_config.max_num_tokens
plugin_config = self.config.plugin_config
if not isinstance(self.config.plugin_config, PluginConfig):
plugin_config = self.model.default_plugin_config()
# patch the additional options
if isinstance(self.config.plugin_config, dict):
for k, v in self.config.plugin_config.items():
setattr(plugin_config, k, v)
if self.config.multi_block_mode:
plugin_config.multi_block_mode = True
build_config = BuildConfig(
max_input_len=max_input_len,
max_output_len=max_output_len,
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
max_num_tokens=max_num_tokens,
strongly_typed=True,
auto_parallel_config=self.auto_parallel_config,
plugin_config=plugin_config,
)
engine = build(self.model, build_config)
self._engine_buffer = engine.engine
self._engine_config = engine.config
self.mapping = self.model.config.mapping
# delete the model explicitly to free all the build-time resources
self.model = None
def _load_engine_buffer(self):
# Load engine buffer from disk
engine = Engine.from_dir(self._model_dir)
self._engine_buffer = engine.engine
self._engine_config = engine.config
def _load_hf_tokenizer(self):
if self._model_dir:
self.tokenizer = ModelLoader.load_hf_tokenizer(self._model_dir)
if self.tokenizer is None:
logger.warning(
f"failed to load HuggingFace tokenizer from {self._model_dir}\n"
"You can also try to copy the tokenizer* files from HuggingFace model to the engine directory manually."
)
@staticmethod
def get_extra_build_configs(model: str, device: str):
# This is a demo implementation for some the default values targeting at a matrix of model and GPU
# TODO[chunweiy]: Add more default configs for models x devices
@dataclass
class ExtraBuildConfig:
max_batch_size: int
max_input_len: int
max_output_len: int
max_num_tokens: int
auto_parallel_config: AutoParallelConfig = None
auto_parallel_config = AutoParallelConfig(
cluster_key=infer_cluster_key(),
sharded_io_allowlist=[
"past_key_value_\\d+",
"present_key_value_\\d*",
],
same_buffer_io={
"past_key_value_(\\d+)": "present_key_value_\\1",
},
)
llama7b_config = ExtraBuildConfig(max_batch_size=128,
max_input_len=412,
max_output_len=200,
max_num_tokens=4096)
llama7b_config.auto_parallel_config = auto_parallel_config
# Default configs for some meta parameters concerning engine building are assigned here.
# Ideally, runtime could adapt these settings and make them invisible to users.
default_config: Dict[str, Dict[str, ExtraBuildConfig]] = {
'llama7b': {
'a30': llama7b_config,
'a100': llama7b_config,
'h100': llama7b_config,
}
}
return default_config[model][device]
@staticmethod
def load_extra_build_configs_from_engine(
model_dir: str) -> Optional[Namespace]:
''' Load the extra build configs from the engine directory, return None if model isn't an engine. '''
if ModelLoader.get_model_format(
model_dir) is not _ModelFormatKind.TLLM_ENGINE:
return None
with open(Path(model_dir) / "config.json", "r") as f:
engine_config = json.load(f)
# TODO[chunweiy]: Remove the following if-check after the engine config is unified.
if 'build_config' not in engine_config:
return None
build_config = engine_config['build_config']
build_config.pop("plugin_config")
return Namespace(**build_config)
@staticmethod
def load_hf_tokenizer(model_dir) -> Optional[TransformersTokenizer]:
try:
return TransformersTokenizer.from_pretrained(model_dir,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=True)
except:
return None