TensorRT-LLMs/benchmarks/cpp/prepare_dataset.py
2024-03-19 17:36:42 +08:00

110 lines
3.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Literal, Optional, Tuple
import click
from pydantic import BaseModel, field_validator
from transformers import AutoTokenizer
from utils.prepare_real_data import dataset
from utils.prepare_synthetic_data import token_norm_dist
from utils.utils import get_req_time_interval
class RootArgs(BaseModel):
tokenizer: str
output: str
request_rate: float
mean_time_bet_reqs: float
time_delay_dist: Literal["constant", "exponential_dist"]
random_seed: int
task_id: int
rand_task_id: Optional[Tuple[int, int]]
@field_validator('tokenizer')
def get_tokenizer(cls, v: str):
try:
tokenizer = AutoTokenizer.from_pretrained(v, padding_side='left')
except EnvironmentError as e:
raise ValueError(
f"Cannot find a tokenizer from the given string because of {e}\nPlease set tokenizer to the directory that contains the tokenizer, or set to a model name in HuggingFace."
)
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
@click.group()
@click.option(
"--tokenizer",
required=True,
type=str,
help=
"Tokenizer dir for the model run by gptManagerBenchmark, or the model name from HuggingFace."
)
@click.option("--output",
type=str,
help="Output json filename.",
default="preprocessed_dataset.json")
@click.option(
"--request-rate",
type=float,
help="# of reqs/sec. -1 indicates Speed of Light/Zero-delay injection rate",
default=-1.0)
@click.option("--time-delay-dist",
type=click.Choice(["constant", "exponential_dist"]),
help="Distribution of the time delay.",
default="exponential_dist")
@click.option("--random-seed",
required=False,
type=int,
help="random seed for exponential delays and token_ids",
default=420)
@click.option("--task-id", type=int, default=-1, help="LoRA task id")
@click.option("--rand-task-id",
type=int,
default=None,
nargs=2,
help="Random LoRA Tasks")
@click.option("--log-level",
default="info",
type=click.Choice(['info', 'debug']),
help="Logging level.")
@click.pass_context
def cli(ctx, **kwargs):
"""This script generates dataset input for gptManagerBenchmark."""
if kwargs['log_level'] == 'info':
logging.basicConfig(level=logging.INFO)
elif kwargs['log_level'] == 'debug':
logging.basicConfig(level=logging.DEBUG)
else:
raise ValueError(f"Unsupported logging level {kwargs['log_level']}")
ctx.obj = RootArgs(tokenizer=kwargs['tokenizer'],
output=kwargs['output'],
request_rate=kwargs['request_rate'],
mean_time_bet_reqs=get_req_time_interval(
kwargs['request_rate']),
time_delay_dist=kwargs['time_delay_dist'],
random_seed=kwargs['random_seed'],
task_id=kwargs['task_id'],
rand_task_id=kwargs['rand_task_id'])
cli.add_command(dataset)
cli.add_command(token_norm_dist)
if __name__ == "__main__":
cli()