TensorRT-LLMs/benchmarks/python/build.py
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

1394 lines
53 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import multiprocessing as mp
import os
import time
from collections import OrderedDict
# isort: off
import torch
import tensorrt as trt
# isort: on
from allowed_configs import (get_allowed_models, get_build_config,
get_model_family)
from base_benchmark import get_engine_name, serialize_engine
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.functional import LayerNormPositionType, LayerNormType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import PretrainedConfig
from tensorrt_llm.models.modeling_utils import QuantConfig, optimize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantAlgo
from tensorrt_llm.quantization.quantize import quantize
def parse_arguments():
parser = argparse.ArgumentParser(description='Build TensorRT-LLM models.')
parser.add_argument('-m',
'--model',
type=str,
required=True,
choices=get_allowed_models(),
help='Specify model you want to build.')
parser.add_argument(
'--mode',
type=str,
default="plugin",
choices=['ootb', 'plugin', 'plugin-ifb', 'ootb-except-mha'],
help=
('Choose mode between ootb/plugin/ootb-except-mha. '
'\"ootb\" means the engines will be built without any plugins, '
'\"plugin\" means the engines will be built with tuned recipe of using plugins.'
'\"plugin-ifb\" will include additional options required for inflight batching.'
'\"ootb-except-mha\" means the engines will be built with only attention plugins.'
))
parser.add_argument(
'--dtype',
type=str,
default='float16',
choices=['float16', 'bfloat16', 'float32'],
help='Choose data type between float16/bfloat16/float32.')
parser.add_argument(
'--quantization',
type=str,
default=None,
choices=[
'fp8', 'fp8_gemm', 'fp8_kv_cache', 'int8_sq_per_tensor',
'int8_sq_per_token_channel', 'int8_weight_only', 'int4_weight_only',
'int4_weight_only_awq', 'int4_weight_only_gptq'
],
help="Optimize the model with specified quantization recipe")
parser.add_argument(
'--profiling_verbosity',
type=str,
default='layer_names_only',
choices=['layer_names_only', 'detailed', 'none'],
help=
'The profiling verbosity for the generated TRT engine. Set to detailed can inspect tactic choices and kernel parameters.'
)
parser.add_argument(
'--log_level',
type=str,
default="error",
choices=['verbose', 'info', 'warning', 'error', 'internal_error'],
help=
'Choose log level between verbose/info/warning/error/internal_error.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='TensorRT engines will be saved to the specified path.')
parser.add_argument(
'--max_beam_width',
type=int,
default=None,
help=
('If this option is specified, it will override the max beam width of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_input_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max input len of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_output_len',
type=int,
default=None,
help=
('If this option is specified, it will override the max output len of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument(
'--max_batch_size',
type=int,
default=None,
help=
('If this option is specified, it will override the max batch size of '
'TRT engines to the specified value instead of using pre-defined one'))
parser.add_argument('--force_num_layer_1',
default=False,
action='store_true',
help='Quick sanity check with num_layer=1.')
parser.add_argument('--serial_build',
default=False,
action='store_true',
help="Build engines serially")
parser.add_argument('--strongly_typed',
default=False,
action='store_true',
help='This option will reduce the building time.')
parser.add_argument(
'--rank',
type=int,
default=None,
help=
"The rank of the model to be built, only used when --serial_build is specified"
)
parser.add_argument(
'--world_size',
type=int,
default=None,
help=
"The number of gpus to be used for inference, only used when --serial_build is specified"
)
return parser.parse_args()
def get_quant_config(quantization: str):
if quantization == "fp8":
return QuantConfig(quant_algo=QuantAlgo.FP8,
kv_cache_quant_algo=QuantAlgo.FP8)
elif quantization == "fp8_gemm":
return QuantConfig(quant_algo=QuantAlgo.FP8)
elif quantization == "fp8_kv_cache":
return QuantConfig(kv_cache_quant_algo=QuantAlgo.FP8)
elif quantization == "int8_sq_per_tensor":
return QuantConfig(quant_algo=QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN)
elif quantization == "int8_sq_per_token_channel":
return QuantConfig(
quant_algo=QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN)
elif quantization == "int8_weight_only":
return QuantConfig(quant_algo=QuantAlgo.W8A16)
elif quantization == "int4_weight_only":
return QuantConfig(quant_algo=QuantAlgo.W4A16)
elif quantization == "int4_weight_only_awq":
return QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ)
elif quantization == "int4_weight_only_gptq":
return QuantConfig(quant_algo=QuantAlgo.W4A16_GPTQ)
elif quantization is None:
return QuantConfig()
else:
raise Exception(f"Unexpected quantization: {quantization}")
def build_gpt(args):
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
strongly_typed = args.strongly_typed
if args.quantization is not None and "fp8" in args.quantization:
strongly_typed = True
num_kv_heads = build_config['num_heads'] \
if build_config['num_kv_heads'] is None else build_config['num_kv_heads']
apply_query_key_layer_scaling = False
max_batch_size = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
max_input_len = build_config['max_input_len'] \
if args.max_input_len is None else args.max_input_len
max_output_len = build_config['max_output_len'] \
if args.max_output_len is None else args.max_output_len
max_beam_width = build_config['max_beam_width'] \
if args.max_beam_width is None else args.max_beam_width
quant_config = get_quant_config(args.quantization)
quant_algo = quant_config.quant_algo
kv_cache_quant_algo = quant_config.kv_cache_quant_algo
quant_mode = quant_config.quant_mode
builder = Builder()
builder_config_extra_kwargs = {}
if get_model_family(args.model) == 'mamba':
builder_config_extra_kwargs['mamba_d_state'] = build_config[
'mamba_d_state']
builder_config_extra_kwargs['mamba_d_conv'] = build_config[
'mamba_d_conv']
builder_config_extra_kwargs['mamba_expand'] = build_config[
'mamba_expand']
builder_config_extra_kwargs['max_beam_width'] = max_beam_width
builder_config_extra_kwargs['layer_types'] = ['recurrent']
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
profiling_verbosity=args.profiling_verbosity,
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_output_len=max_output_len,
int8=(quant_mode.has_act_and_weight_quant()
or quant_mode.is_int8_weight_only()),
quant_mode=quant_mode,
use_refit=False,
opt_level=build_config['builder_opt'],
strongly_typed=strongly_typed,
**builder_config_extra_kwargs)
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
# Initialize Module
family = get_model_family(args.model)
if family == "gpt":
if build_config['num_kv_heads'] is None:
build_config['num_kv_heads'] = build_config['num_heads']
if build_config['inter_size'] is None:
build_config['inter_size'] = build_config['hidden_size'] * 4
if build_config['position_embedding_type'] is None:
build_config['position_embedding_type'] = 'learned_absolute'
config = {
'architecture': 'GPTForCausalLM',
'dtype': args.dtype,
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'num_key_value_heads': build_config['num_kv_heads'],
'hidden_size': build_config['hidden_size'],
'intermediate_size': build_config['inter_size'],
'norm_epsilon': 1e-05,
'vocab_size': build_config['vocab_size'],
'position_embedding_type': build_config['position_embedding_type'],
'max_position_embeddings': build_config['n_positions'],
'hidden_act': build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128,
},
'mapping': {
'world_size': world_size,
'tp_size': world_size,
},
'bias': build_config['bias'],
'apply_query_key_layer_scaling':
builder_config.apply_query_key_layer_scaling,
'rotary_pct': build_config['rotary_pct'],
'moe_num_experts': build_config["moe_num_experts"],
'moe_top_k': build_config["moe_top_k"],
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.GPTForCausalLM(config)
elif family == "opt":
config = {
'architecture': 'OPTForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': False,
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'do_layer_norm_before': build_config['do_layer_norm_before'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128
}
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.OPTForCausalLM(config)
elif family == "llama":
config = {
'architecture':
'LLaMAForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'intermediate_size':
build_config['inter_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'moe_num_experts':
build_config["moe_num_experts"],
'moe_top_k':
build_config["moe_top_k"],
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.LLaMAForCausalLM(config)
tensorrt_llm_model = optimize_model(tensorrt_llm_model,
use_fused_mlp=True)
elif family == "gptj":
config = {
'architecture': 'GPTJForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'rotary_dim': build_config['rotary_dim'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': False,
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'do_layer_norm_before': build_config['do_layer_norm_before'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128
}
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.GPTJForCausalLM(config)
elif family == "gptneox":
config = {
'architecture':
'GPTNeoXForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'learned_absolute',
'max_position_embeddings':
build_config['n_positions'],
'rotary_emb_base':
10000,
'rotary_pct':
1.0 * build_config['rotary_dim'] * build_config['num_heads'] /
build_config['hidden_size'],
'hidden_act':
build_config['hidden_act'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding':
False,
'share_embedding_table':
False,
'embedding_sharding_dim':
0,
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128,
}
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.GPTNeoXForCausalLM(config)
elif family == "chatglm":
config = {
'architecture': 'ChatGLMForCausalLM',
'dtype': args.dtype,
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'num_key_value_heads': build_config['num_kv_heads'],
'hidden_size': build_config['hidden_size'],
'intermediate_size': build_config['inter_size'],
'norm_epsilon': 1e-5,
'vocab_size': build_config['vocab_size'],
'position_embedding_type': 'chatglm',
'max_position_embeddings': build_config['n_positions'],
'hidden_act': build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'chatglm_version': 'chatglm',
'add_bias_linear': True,
'add_qkv_bias': True,
'apply_query_key_layer_scaling': False,
'apply_residual_connection_post_layernorm': False,
'rmsnorm': False,
'rope_ratio': 1.0,
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.ChatGLMForCausalLM(config)
elif family in ["chatglm2", "chatglm3"]:
config = {
'architecture': 'ChatGLMForCausalLM',
'dtype': args.dtype,
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'num_key_value_heads': build_config['num_kv_heads'],
'hidden_size': build_config['hidden_size'],
'intermediate_size': build_config['inter_size'],
'norm_epsilon': 1e-5,
'vocab_size': build_config['vocab_size'],
'position_embedding_type': 'rope_gptj',
'max_position_embeddings': build_config['n_positions'],
'hidden_act': build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'chatglm_version': family,
'add_bias_linear': False,
'add_qkv_bias': True,
'apply_query_key_layer_scaling': False,
'apply_residual_connection_post_layernorm': False,
'rmsnorm': True,
'rope_ratio': 1.0,
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.ChatGLMForCausalLM(config)
elif family == "bloom":
config = {
'architecture': 'BloomForCausalLM',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'max_position_embeddings': build_config['n_positions'],
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'use_parallel_embedding': (args.model == 'bloom_176b'),
'share_embedding_table': False,
'embedding_sharding_dim': 0,
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128
}
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.BloomForCausalLM(config)
tensorrt_llm_model = optimize_model(
tensorrt_llm_model,
use_parallel_embedding=config.use_parallel_embedding)
elif family == "falcon":
config = {
'architecture':
'FalconForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'alibi_with_scale'
if build_config['use_alibi'] else 'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'bias':
build_config['bias'],
'parallel_attention':
build_config['parallel_attention'],
'new_decoder_architecture':
build_config['new_decoder_architecture'],
}
if quant_mode.is_weight_only() and quant_mode.has_per_group_scaling():
config['quantization'].update({
'has_zero_point': False,
'pre_quant_scale': True,
'exclude_modules': [],
})
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.FalconForCausalLM(config)
elif family == "baichuan":
config = {
'architecture':
'BaichuanForCausalLM',
'dtype':
args.dtype,
'logits_dtype':
'float32',
'vocab_size':
build_config['vocab_size'],
'max_position_embeddings':
build_config['n_positions'],
'hidden_size':
build_config['hidden_size'],
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'],
'hidden_act':
build_config['hidden_act'],
'intermediate_size':
build_config['inter_size'],
'position_embedding_type':
'alibi_with_scale' if '7b' in args.model else 'rope_gpt_neox',
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': 128
},
'mapping': {
'world_size': world_size,
'tp_size': world_size,
},
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.BaichuanForCausalLM(config)
elif family == "internlm":
config = {
'architecture':
'LLaMAForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'attn_bias':
build_config['bias'],
}
if quant_mode.is_weight_only():
if 'awq' in args.quantization:
config['quantization'].update({
"group_size": 128,
"has_zero_point": False,
"pre_quant_scale": True,
"exclude_modules": [],
})
elif 'gptq' in args.quantization:
config['quantization'].update({
"group_size": 128,
"has_zero_point": True,
"pre_quant_scale": False,
})
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.LLaMAForCausalLM(config)
elif family == "qwen":
config = {
'architecture':
'QWenForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'intermediate_size':
build_config['inter_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'group_size': 128,
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'moe_num_experts':
build_config["moe_num_experts"],
'moe_top_k':
build_config["moe_top_k"],
'qwen_type':
'qwen',
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.QWenForCausalLM(config)
elif family == "qwen2":
config = {
'architecture':
'QWenForCausalLM',
'dtype':
args.dtype,
'num_hidden_layers':
build_config['num_layers'],
'num_attention_heads':
build_config['num_heads'],
'num_key_value_heads':
build_config['num_heads'] if build_config['num_kv_heads'] is None
else build_config['num_kv_heads'],
'hidden_size':
build_config['hidden_size'],
'intermediate_size':
build_config['inter_size'],
'vocab_size':
build_config['vocab_size'],
'position_embedding_type':
'rope_gpt_neox',
'max_position_embeddings':
build_config['n_positions'],
'hidden_act':
build_config['hidden_act'],
'quantization': {
'group_size': 128,
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo
},
'mapping': {
'world_size': world_size,
'tp_size': world_size
},
'moe_num_experts':
build_config["moe_num_experts"],
'moe_top_k':
build_config["moe_top_k"],
'qwen_type':
'qwen2',
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.QWenForCausalLM(config)
elif family == "mamba":
config = {
'architecture': 'MambaLMHeadModel',
'dtype': args.dtype,
'vocab_size': build_config['vocab_size'],
'hidden_size': build_config['hidden_size'],
'num_hidden_layers': build_config['num_layers'],
'num_attention_heads': build_config['num_heads'],
'hidden_act': build_config['hidden_act'],
'ssm_cfg': {
'd_state': build_config['mamba_d_state'],
'd_conv': build_config['mamba_d_conv'],
'expand': build_config['mamba_expand']
},
'rms_norm': True,
'residual_in_fp32': True,
'pad_vocab_size_multiple': 8,
}
config = PretrainedConfig.from_dict(config)
tensorrt_llm_model = tensorrt_llm.models.MambaLMHeadModel(config)
else:
raise Exception(f'Unexpected model: {args.model}')
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
network.plugin_config.to_legacy_setting()
# Plugins
if args.mode in ['plugin', 'plugin-ifb']:
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
network.plugin_config.enable_remove_input_padding()
network.plugin_config.set_lookup_plugin(dtype=args.dtype)
network.plugin_config.set_moe_plugin(dtype=args.dtype)
network.plugin_config.set_mamba_conv1d_plugin(dtype=args.dtype)
if args.quantization is None or "fp8" not in args.quantization:
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
# Quantization plugins.
use_smooth_quant = quant_mode.has_act_and_weight_quant()
use_weight_only = quant_mode.is_weight_only()
if use_smooth_quant:
network.plugin_config.set_smooth_quant_plugins(dtype=args.dtype)
elif use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
elif family == "llama" and quant_mode.has_act_and_weight_quant():
# RMS norm plugin for SmoothQuant
network.plugin_config.set_rmsnorm_quantization_plugin(
dtype=args.dtype)
# Inflight batching
if args.mode == 'plugin-ifb':
network.plugin_config.enable_paged_kv_cache()
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype,
use_custom_all_reduce=build_config["use_custom_all_reduce"])
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_model.named_parameters())
# Forward
inputs = tensorrt_llm_model.prepare_inputs(
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_seq_len=max_input_len + max_output_len,
use_cache=True,
max_beam_width=max_beam_width)
tensorrt_llm_model(**inputs)
if args.mode in ['plugin', 'plugin-ifb']:
tensorrt_llm.graph_rewriting.optimize(network)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
serialize_path = os.path.join(args.output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, build_time
def build_bert(args):
family = get_model_family(args.model)
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
num_kv_heads = build_config['num_heads'] \
if build_config['num_kv_heads'] is None else build_config['num_kv_heads']
max_batch_size = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
max_input_len = build_config['max_input_len'] \
if args.max_input_len is None else args.max_input_len
bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
inlen_range = [1, (max_input_len + 1) // 2, max_input_len]
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
profiling_verbosity=args.profiling_verbosity,
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
num_kv_heads=num_kv_heads,
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
max_batch_size=max_batch_size,
max_input_len=max_input_len,
opt_level=build_config['builder_opt'],
strongly_typed=args.strongly_typed)
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
# Initialize model
tensorrt_llm_bert = tensorrt_llm.models.BertModel(
num_layers=build_config['num_layers'],
num_heads=build_config['num_heads'],
hidden_size=build_config['hidden_size'],
vocab_size=build_config['vocab_size'],
hidden_act=build_config['hidden_act'],
max_position_embeddings=build_config['n_positions'],
type_vocab_size=build_config['type_vocab_size'],
pad_token_id=None
if family == 'bert' else 1, # hard code for RoBERTa here
is_roberta=(family == 'roberta'),
mapping=tensorrt_llm.Mapping(world_size=world_size, tp_size=world_size),
dtype=str_dtype_to_trt(args.dtype))
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
network.plugin_config.to_legacy_setting()
# Plugins
if args.mode == 'plugin':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
network.plugin_config.enable_qk_half_accum()
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype,
use_custom_all_reduce=build_config["use_custom_all_reduce"])
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_bert.named_parameters())
# Forward
input_ids = tensorrt_llm.Tensor(
name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('batch_size', [bs_range]),
('input_len', [inlen_range])]),
)
input_lengths = tensorrt_llm.Tensor(name='input_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size', [bs_range])
]))
hidden_states = tensorrt_llm_bert(input_ids=input_ids,
input_lengths=input_lengths)
# Mark outputs
hidden_states_dtype = str_dtype_to_trt(args.dtype)
hidden_states.mark_output('hidden_states', hidden_states_dtype)
# Network -> Engine
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
if args.output_dir is not None:
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
serialize_path = os.path.join(args.output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, build_time
def enc_dec_build_helper(component, config, args):
# More parameters
if args.serial_build and args.rank is not None and args.world_size is not None:
runtime_rank = args.rank
world_size = args.world_size
else:
runtime_rank = tensorrt_llm.mpi_rank()
world_size = tensorrt_llm.mpi_world_size()
if not args.serial_build:
torch.cuda.set_device(runtime_rank)
family = get_model_family(args.model)
logits_dtype = 'float32'
n_mels = 0
if family == 'bart':
q_scaling = 1.0
has_attention_qkvo_bias = True
has_mlp_bias = True
has_model_final_layernorm = False
has_position_embedding = True
has_embedding_layernorm = True
layernorm_type = LayerNormType.LayerNorm
relative_attention = False
layernorm_position = LayerNormPositionType.pre_layernorm if config.get(
'normalize_before', True) else LayerNormPositionType.post_layernorm
rescale_before_lm_head = False
elif family == 'whisper':
q_scaling = 1.0
has_position_embedding = True
relative_attention = False
has_embedding_layernorm = False
has_attention_qkvo_bias = True
has_mlp_bias = True
has_model_final_layernorm = True
layernorm_position = LayerNormPositionType.pre_layernorm
layernorm_type = LayerNormType.LayerNorm
rescale_before_lm_head = False
logits_dtype = str_dtype_to_trt(args.dtype)
n_mels = config['n_mels']
else:
q_scaling = 1 / config['head_size']**.5
has_attention_qkvo_bias = False
has_mlp_bias = False
has_model_final_layernorm = True
has_position_embedding = False
has_embedding_layernorm = False
layernorm_type = LayerNormType.RmsNorm
relative_attention = True
layernorm_position = LayerNormPositionType.pre_layernorm
if family == 't5':
rescale_before_lm_head = True
else:
rescale_before_lm_head = False
quant_config = get_quant_config(args.quantization)
quant_mode = quant_config.quant_mode
use_weight_only = quant_mode.is_weight_only()
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=None,
profiling_verbosity='layer_names_only', # by default
tensor_parallel=world_size, # TP only
parallel_build=True,
num_layers=config['num_layers'],
num_heads=config['num_heads'],
hidden_size=config['hidden_size'],
head_size=config['head_size'],
vocab_size=config['vocab_size'],
hidden_act=config['hidden_act'],
max_position_embeddings=config['n_positions'],
apply_query_key_layer_scaling=False, # by default, hardcoded
max_batch_size=config['max_batch_size'],
max_beam_width=config['max_beam_width'],
max_decoder_input_len=config['max_decoder_input_len'],
max_output_len=config['max_output_len'],
max_encoder_input_len=config['max_encoder_input_len'],
opt_level=config['builder_opt'],
cross_attention=(component == 'decoder'),
has_position_embedding=has_position_embedding,
has_token_type_embedding=False, # by default
strongly_typed=False, # by default
gather_all_token_logits=False, # by default
int8=(quant_mode.has_act_and_weight_quant()
or quant_mode.is_int8_weight_only()),
quant_mode=quant_mode,
n_mels=n_mels,
skip_cross_qkv=config['skip_cross_qkv'],
)
# build engine
dtype = str_dtype_to_trt(args.dtype)
mapping = Mapping(world_size=world_size,
rank=runtime_rank,
tp_size=world_size,
pp_size=1) # TP only
if component == 'encoder':
if family == 'whisper':
tllm_model = tensorrt_llm.models.WhisperEncoder(
n_mels=config['n_mels'],
n_ctx=1500, # n_audio_ctx
n_state=config['hidden_size'],
n_head=config['num_heads'],
n_layer=config['num_layers'],
dtype=dtype)
if use_weight_only:
tllm_model = quantize(tllm_model, quant_config)
else:
pretrained_config = PretrainedConfig.from_dict({
'architecture':
"EncoderModel",
'dtype':
args.dtype,
'logits_dtype':
logits_dtype,
'num_hidden_layers':
config['num_layers'],
'num_attention_heads':
config['num_heads'],
'hidden_size':
config['hidden_size'],
'norm_epsilon':
1e-6,
'vocab_size':
config['vocab_size'],
'hidden_act':
config['hidden_act'],
'mapping': {
'world_size': mapping.world_size,
'tp_size': mapping.tp_size,
'pp_size': mapping.pp_size,
},
'use_parallel_embedding':
False,
'embedding_sharding_dim':
0,
'max_position_embeddings':
config.get('n_positions', 0),
'use_prompt_tuning':
False,
'head_size':
config['head_size'],
'has_position_embedding':
has_position_embedding,
'layernorm_type':
layernorm_type,
'has_attention_qkvo_bias':
has_attention_qkvo_bias,
'has_mlp_bias':
has_mlp_bias,
'has_model_final_layernorm':
has_model_final_layernorm,
'has_embedding_layernorm':
has_embedding_layernorm,
'has_embedding_scale':
config.get('has_embedding_scale', False),
'ffn_hidden_size':
config['ffn_hidden_size'],
'q_scaling':
q_scaling,
'layernorm_position':
layernorm_position,
'relative_attention':
relative_attention,
'max_distance':
config.get('max_distance', 0),
'num_buckets':
config.get('num_buckets', 0),
'model_type':
family,
})
tllm_model = tensorrt_llm.models.EncoderModel(pretrained_config)
elif component == 'decoder':
pretrained_config = PretrainedConfig.from_dict({
'architecture':
"DecoderModel",
'dtype':
args.dtype,
'logits_dtype':
logits_dtype,
'num_hidden_layers':
config['num_layers'],
'num_attention_heads':
config['num_heads'],
'hidden_size':
config['hidden_size'],
'norm_epsilon':
1e-6,
'vocab_size':
config['vocab_size'],
'hidden_act':
config['hidden_act'],
'mapping': {
'world_size': mapping.world_size,
'tp_size': mapping.tp_size,
'pp_size': mapping.pp_size,
},
'use_parallel_embedding':
False,
'embedding_sharding_dim':
0,
'max_position_embeddings':
config.get('n_positions', 0),
'use_prompt_tuning':
False,
'head_size':
config['head_size'],
'has_position_embedding':
has_position_embedding,
'layernorm_type':
layernorm_type,
'has_attention_qkvo_bias':
has_attention_qkvo_bias,
'has_mlp_bias':
has_mlp_bias,
'has_model_final_layernorm':
has_model_final_layernorm,
'has_embedding_layernorm':
has_embedding_layernorm,
'has_embedding_scale':
config.get('has_embedding_scale', False),
'ffn_hidden_size':
config['ffn_hidden_size'],
'q_scaling':
q_scaling,
'layernorm_position':
layernorm_position,
'relative_attention':
relative_attention,
'max_distance':
config.get('max_distance', 0),
'num_buckets':
config.get('num_buckets', 0),
'model_type':
family,
'rescale_before_lm_head':
rescale_before_lm_head,
'encoder_hidden_size':
config['hidden_size'],
'encoder_num_heads':
config['num_heads'],
'encoder_head_size':
config['head_size'],
'skip_cross_qkv':
config['skip_cross_qkv']
})
tllm_model = tensorrt_llm.models.DecoderModel(pretrained_config)
if use_weight_only and family == 'whisper':
tllm_model = quantize(tllm_model, quant_config)
# Module -> Network
engine_name = get_engine_name(args.model, args.dtype, world_size,
runtime_rank)
network = builder.create_network()
network.trt_network.name = engine_name
network.plugin_config.to_legacy_setting()
# Plugins
if args.mode == 'plugin':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
if use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
elif args.mode == 'ootb-except-mha':
network.plugin_config.set_bert_attention_plugin(dtype=args.dtype)
network.plugin_config.set_gpt_attention_plugin(dtype=args.dtype)
if world_size > 1:
network.plugin_config.set_nccl_plugin(
dtype=args.dtype, use_custom_all_reduce=False) # by default
with net_guard(network):
# Prepare
network.set_named_parameters(tllm_model.named_parameters())
# Forward
if component == 'encoder':
if family == 'whisper':
inputs = tllm_model.prepare_inputs(
max_batch_size=config['max_batch_size'], )
tllm_model(*inputs)
else:
inputs = tllm_model.prepare_inputs(
max_batch_size=config['max_batch_size'],
max_input_len=config['max_encoder_input_len'],
)
tllm_model(**inputs)
elif component == 'decoder':
if family == 'whisper':
inputs = tllm_model.prepare_inputs(
max_batch_size=config['max_batch_size'],
max_beam_width=config['max_beam_width'],
max_decoder_input_len=config['max_decoder_input_len'],
max_seq_len=config['max_output_len'],
max_encoder_input_len=1500, # n_audio_ctx
)
tllm_model(**inputs)
else:
inputs = tllm_model.prepare_inputs(
max_batch_size=config['max_batch_size'],
max_beam_width=config['max_beam_width'],
max_decoder_input_len=config['max_decoder_input_len'],
max_seq_len=config['max_output_len'],
max_encoder_input_len=config['max_encoder_input_len'],
)
tllm_model(**inputs)
start = time.time()
engine = builder.build_engine(network, builder_config)
assert engine is not None, f'Failed to build engine for rank {runtime_rank}'
build_time = round(time.time() - start, 2)
# Get model config
num_heads = config['num_heads']
assert (num_heads % world_size) == 0
num_heads = num_heads // world_size
hidden_size = config['hidden_size'] // world_size
model_config = tensorrt_llm.runtime.ModelConfig(
num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
head_size=builder_config.head_size,
max_batch_size=builder_config.max_batch_size,
max_beam_width=builder_config.max_beam_width,
vocab_size=builder_config.vocab_size,
num_layers=builder_config.num_layers,
gpt_attention_plugin=network.plugin_config.gpt_attention_plugin,
remove_input_padding=network.plugin_config.remove_input_padding,
cross_attention=builder_config.cross_attention,
has_position_embedding=builder_config.has_position_embedding,
has_token_type_embedding=builder_config.has_token_type_embedding,
use_custom_all_reduce=False, # by default
dtype=dtype,
)
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, component)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
serialize_path = os.path.join(output_dir, engine_name)
serialize_engine(engine, serialize_path)
if runtime_rank == 0:
config_path = os.path.join(output_dir, 'config.json')
builder_config.plugin_config = network.plugin_config
builder.save_config(builder_config, config_path)
return engine, model_config, build_time
def build_enc_dec(args):
build_config = get_build_config(args.model)
if args.force_num_layer_1:
build_config['num_layers'] = 1
build_config['max_batch_size'] = build_config['max_batch_size'] \
if args.max_batch_size is None else args.max_batch_size
build_config['max_encoder_input_len'] = build_config['max_encoder_input_len'] \
if args.max_input_len is None else args.max_input_len
build_config['max_decoder_input_len'] = 1
build_config['max_output_len'] = build_config['max_output_len'] \
if args.max_output_len is None else args.max_output_len
build_config[
'max_beam_width'] = 1 if args.max_beam_width is None else args.max_beam_width
encoder_engine, encoder_model_config, encoder_build_time = enc_dec_build_helper(
component='encoder', config=build_config, args=args)
decoder_engine, decoder_model_config, decoder_build_time = enc_dec_build_helper(
component='decoder', config=build_config, args=args)
return encoder_engine, decoder_engine, encoder_model_config, decoder_model_config, encoder_build_time, decoder_build_time
def main(args):
logger.set_level(args.log_level)
if args.model in get_allowed_models(benchmark_type="gpt"):
engine = build_gpt(args)[0]
engine_size = engine.nbytes
elif args.model in get_allowed_models(benchmark_type="bert"):
engine = build_bert(args)[0]
engine_size = engine.nbytes
elif args.model in get_allowed_models(benchmark_type="enc_dec"):
encoder_engine, decoder_engine = build_enc_dec(args)[:2]
engine_size = encoder_engine.nbytes + decoder_engine.nbytes
else:
raise Exception(f'Unexpected model: {args.model}')
# Print engine size for CI/CD to track.
logger.info(
f"Total engine size per GPU is {engine_size / 1048576:.2f} MiB.")
if __name__ == '__main__':
mp.set_start_method('spawn')
args = parse_arguments()
main(args)