TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/samplingConfig.h
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

198 lines
9.1 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/runtime/common.h"
#include <functional>
#include <optional>
#include <vector>
namespace tensorrt_llm::runtime
{
class SamplingConfig
{
private:
using FloatType = float;
template <typename T>
using OptVec = std::optional<std::vector<T>>;
template <typename T>
static OptVec<T> fuseValues(
std::vector<SamplingConfig> const& configs, std::function<OptVec<T>(size_t ci)> accessor, T defaultValue)
{
std::vector<T> values;
for (size_t ci = 0; ci < configs.size(); ++ci)
{
auto value = defaultValue;
auto const& configValue = accessor(ci);
if (configValue.has_value())
{
TLLM_CHECK(configValue.value().size() == 1);
value = configValue.value().front();
}
values.push_back(value);
}
return std::make_optional<std::vector<T>>(values);
}
template <typename T>
using Vec = std::vector<T>;
public:
explicit SamplingConfig(SizeType beamWidth = 1)
: beamWidth{beamWidth}
{
}
explicit SamplingConfig(std::vector<SamplingConfig> const& configs)
{
TLLM_CHECK(configs.size() > 0);
beamWidth = configs.front().beamWidth;
normalizeLogProbs = configs.front().normalizeLogProbs;
temperature = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].temperature; },
layers::DefaultDecodingParams::getTemperature());
minLength = fuseValues<SizeType32>(
configs, [&configs](size_t ci) { return configs[ci].minLength; },
layers::DefaultDecodingParams::getMinLength());
repetitionPenalty = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].repetitionPenalty; },
layers::DefaultDecodingParams::getRepetitionPenalty());
presencePenalty = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].presencePenalty; },
layers::DefaultDecodingParams::getPresencePenalty());
frequencyPenalty = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].frequencyPenalty; },
layers::DefaultDecodingParams::getFrequencyPenalty());
topK = fuseValues<SizeType32>(
configs, [&configs](size_t ci) { return configs[ci].topK; }, layers::DefaultDecodingParams::getTopK());
topP = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].topP; }, layers::DefaultDecodingParams::getTopP());
randomSeed = fuseValues<uint64_t>(
configs, [&configs](size_t ci) { return configs[ci].randomSeed; },
layers::DefaultDecodingParams::getSeed());
topPDecay = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].topPDecay; },
layers::DefaultDecodingParams::getTopPDecay());
topPMin = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].topPMin; },
layers::DefaultDecodingParams::getTopPMin());
topPResetIds = fuseValues<TokenIdType>(
configs, [&configs](size_t ci) { return configs[ci].topPResetIds; },
layers::DefaultDecodingParams::getTopPResetId());
beamSearchDiversityRate = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].beamSearchDiversityRate; },
layers::DefaultDecodingParams::getBeamSearchDiversity());
lengthPenalty = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].lengthPenalty; },
layers::DefaultDecodingParams::getLengthPenalty());
earlyStopping = fuseValues<SizeType32>(
configs, [&configs](size_t ci) { return configs[ci].earlyStopping; },
layers::DefaultDecodingParams::getEarlyStopping());
topKMedusaHeads = fuseValues<std::vector<SizeType32>>(
configs, [&configs](size_t ci) { return configs[ci].topKMedusaHeads; },
layers::DefaultDecodingParams::getTopKMedusaHeads());
// Only used for tests.
draftAcceptanceThreshold = fuseValues<FloatType>(
configs, [&configs](size_t ci) { return configs[ci].draftAcceptanceThreshold; }, 0);
}
explicit SamplingConfig(executor::SamplingConfig const& samplingConfig,
std::optional<executor::SpeculativeDecodingConfig> const& specDecodingConfig)
: beamWidth{samplingConfig.getBeamWidth()}
{
if (specDecodingConfig && specDecodingConfig.value().getAcceptanceThreshold())
{
draftAcceptanceThreshold = Vec<FloatType>{specDecodingConfig.value().getAcceptanceThreshold().value()};
}
#define SET_FROM_OPTIONAL(varName, VarName, VarType) \
\
if (samplingConfig.get##VarName()) \
{ \
varName = Vec<VarType>{samplingConfig.get##VarName().value()}; \
}
SET_FROM_OPTIONAL(topK, TopK, SizeType)
SET_FROM_OPTIONAL(topP, TopP, FloatType)
SET_FROM_OPTIONAL(topPMin, TopPMin, FloatType)
SET_FROM_OPTIONAL(topPResetIds, TopPResetIds, SizeType)
SET_FROM_OPTIONAL(topPDecay, TopPDecay, FloatType)
SET_FROM_OPTIONAL(randomSeed, RandomSeed, uint64_t)
SET_FROM_OPTIONAL(temperature, Temperature, FloatType)
SET_FROM_OPTIONAL(minLength, MinLength, SizeType)
SET_FROM_OPTIONAL(beamSearchDiversityRate, BeamSearchDiversityRate, FloatType)
SET_FROM_OPTIONAL(repetitionPenalty, RepetitionPenalty, FloatType)
SET_FROM_OPTIONAL(presencePenalty, PresencePenalty, FloatType)
SET_FROM_OPTIONAL(frequencyPenalty, FrequencyPenalty, FloatType)
SET_FROM_OPTIONAL(lengthPenalty, LengthPenalty, FloatType)
SET_FROM_OPTIONAL(earlyStopping, EarlyStopping, SizeType)
#undef SET_FROM_OPTIONAL
}
public:
SizeType beamWidth;
OptVec<FloatType> temperature; // [1] or [batch_size] on cpu
OptVec<SizeType32> minLength; // [1] or [batch_size] on cpu
OptVec<FloatType> repetitionPenalty; // [1] or [batch_size] on cpu
OptVec<FloatType> presencePenalty; // [1] or [batch_size] on cpu
OptVec<FloatType> frequencyPenalty; // [1] or [batch_size] on cpu
// sampling layers
OptVec<SizeType32> topK; // [1] or [batch_size] on cpu
OptVec<FloatType> topP; // [1] or [batch_size] on cpu
OptVec<uint64_t> randomSeed; // [1] or [batch_size] on cpu
OptVec<FloatType> topPDecay; // [batch_size], must between [0, 1]
OptVec<FloatType> topPMin; // [batch_size], must between [0, 1]
OptVec<TokenIdType> topPResetIds; // [batch_size]
// beam search layer
OptVec<FloatType> beamSearchDiversityRate; // [1] or [batch_size]
OptVec<FloatType> lengthPenalty; // [1] or [batch_size]
OptVec<SizeType32> earlyStopping; // [1] or [batch_size]
// speculative decoding, only the first value is used (in gptDecoderBatch.cpp)
OptVec<FloatType> draftAcceptanceThreshold; // [1] or [batch_size]
// medusa params
OptVec<std::vector<runtime::SizeType32>> topKMedusaHeads; // [batchSize, maxMedusaHeads]
std::optional<bool> normalizeLogProbs;
bool operator==(SamplingConfig const& other) const
{
return beamWidth == other.beamWidth && temperature == other.temperature && minLength == other.minLength
&& repetitionPenalty == other.repetitionPenalty && presencePenalty == other.presencePenalty
&& frequencyPenalty == other.frequencyPenalty && topK == other.topK && topP == other.topP
&& randomSeed == other.randomSeed && topPDecay == other.topPDecay && topPMin == other.topPMin
&& topPResetIds == other.topPResetIds && beamSearchDiversityRate == other.beamSearchDiversityRate
&& lengthPenalty == other.lengthPenalty && earlyStopping == other.earlyStopping
&& draftAcceptanceThreshold == other.draftAcceptanceThreshold && topKMedusaHeads == other.topKMedusaHeads
&& normalizeLogProbs == other.normalizeLogProbs;
}
};
} // namespace tensorrt_llm::runtime