TensorRT-LLMs/tensorrt_llm/executor.py
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

1178 lines
42 KiB
Python

import asyncio
import datetime
import secrets
import traceback
from abc import ABC, abstractmethod
from dataclasses import dataclass
from multiprocessing.connection import Client, Listener
from pathlib import Path
from queue import Queue
from threading import Lock, Semaphore, Thread
from typing import Any, Dict, Generator, List, Optional, Set, Tuple, Union
import numpy as np
import torch
from janus import Queue as AsyncQueue
from mpi4py import MPI
from tensorrt_llm._utils import mpi_comm, mpi_rank, mpi_world_size
from tensorrt_llm.hlapi.mpi_session import MpiSession, find_free_port
from tensorrt_llm.hlapi.tokenizer import TokenizerBase, tokenizer_factory
from tensorrt_llm.hlapi.utils import (ContextManager, GenerationOutput,
SamplingConfig, print_traceback_on_error)
from . import bindings as tllm
from .bindings import executor as tllme
def has_event_loop() -> bool:
try:
asyncio.get_running_loop()
except RuntimeError:
return False
return True
class GenerationRequest:
def __init__(self,
ids_or_prompt: Union[torch.Tensor, np.ndarray, list, str],
streaming: bool = True,
tokenizer: Optional[TokenizerBase] = None,
sampling_config: Optional[SamplingConfig] = None):
if isinstance(ids_or_prompt, str):
assert tokenizer is not None, "GenerationRequest constructor with str prompt requires a tokenizer argument"
self.input_ids = (tokenizer.encode(ids_or_prompt,
return_tensors="pt",
return_attention_mask=False).to(
torch.int32).numpy())
else:
if isinstance(ids_or_prompt, list):
self.input_ids = np.array(ids_or_prompt, dtype="int32")
elif isinstance(ids_or_prompt, torch.Tensor):
self.input_ids = ids_or_prompt.to(torch.int32).numpy()
elif isinstance(ids_or_prompt, np.ndarray):
self.input_ids = ids_or_prompt
else:
raise ValueError(
f"ids_or_prompt (={ids_or_prompt}) should be an instance of str, torch.Tensor, np.ndarray or list"
)
self.tokenizer = tokenizer
self.streaming = streaming
self.sampling_config = sampling_config or SamplingConfig()
self.id = -1
def set_id(self, id):
self.id = id
return self
def as_inference_request(self) -> tllm.InferenceRequest:
ir = tllm.InferenceRequest(self.id)
ir.input_ids = torch.from_numpy(self.input_ids)
ir.is_streaming = self.streaming
def set_property(name: str,
dtype: torch.dtype = torch.int32,
default: Any = None,
value=None):
if value is None:
value = getattr(self.sampling_config, name, None)
value = value if value is not None else default
if value is not None:
setattr(ir, name, torch.tensor([value], dtype=dtype))
top_k = self.sampling_config.top_k[
0] if self.sampling_config.top_k is not None else None
top_p = self.sampling_config.top_p[
0] if self.sampling_config.top_p is not None else None
temperature = self.sampling_config.temperature[
0] if self.sampling_config.temperature is not None else None
max_new_tokens = [
self.sampling_config.max_new_tokens
] if self.sampling_config.max_new_tokens is not None else None
min_length = self.sampling_config.min_length[
0] if self.sampling_config.min_length is not None else None
end_id = self.tokenizer.eos_token_id if self.tokenizer is not None else None
pad_id = self.tokenizer.pad_token_id if self.tokenizer is not None else None
pad_id = end_id if pad_id is None else pad_id
set_property("beam_width")
set_property("max_new_tokens", default=[32], value=max_new_tokens)
set_property("end_id", value=end_id)
set_property("pad_id", value=pad_id)
set_property("min_length", value=min_length)
set_property("temperature", torch.float32, value=temperature)
set_property("runtime_top_k", torch.float32, value=top_k)
set_property("runtime_top_p", torch.float32, value=top_p)
set_property("random_seed", torch.int64)
return ir
def as_executor_request(self) -> tllme.Request:
# SamplingConfig
sampling_kwargs = {}
def set_property(name):
value = getattr(self.sampling_config, name, None)
if value:
sampling_kwargs[name] = value[0] if isinstance(value,
list) else value
set_property("beam_width")
set_property("min_length")
set_property("top_k")
set_property("top_p")
set_property("temperature")
set_property("random_seed")
set_property("beam_search_diversity_rate")
set_property("early_stopping")
set_property("frequency_penalty")
set_property("length_penalty")
set_property("presence_penalty")
set_property("repetition_penalty")
set_property("top_p_decay")
set_property("top_p_min")
set_property("top_p_reset_ids")
sampling_config = tllme.SamplingConfig(**sampling_kwargs)
# Request
end_id = self.tokenizer.eos_token_id if self.tokenizer is not None else None
pad_id = self.tokenizer.pad_token_id if self.tokenizer is not None else None
pad_id = end_id if pad_id is None else pad_id
request_kwargs = {
"input_token_ids": self.input_ids.squeeze().tolist(),
"max_new_tokens": self.sampling_config.max_new_tokens or 32,
"streaming": self.streaming,
"sampling_config": sampling_config,
"end_id": end_id,
"pad_id": pad_id,
# The following options in the Executor API are not yet exposed by the HLAPI:
# https://jirasw.nvidia.com/browse/TRTLLM-489
"output_config": tllme.OutputConfig(), # TODO
"bad_words": None, #TODO
"stop_words": None, #TODO
"embedding_bias": None, #TODO
"speculative_decoding_config": None, #TODO
"prompt_tuning_config": None, #TODO
"lora_config": None, #TODO
"logits_post_processor_name": None, #TODO
}
request = tllme.Request(**request_kwargs)
return request
class GenerationResult(GenerationOutput):
def __init__(self,
generation_request: GenerationRequest,
tokenizer: Optional[TokenizerBase] = None) -> None:
self._done = False
self._cancelled = False
self.generation_request = generation_request
self.tokenizer = tokenizer
self.streaming = generation_request.streaming
if has_event_loop():
aqueue = AsyncQueue()
self.queue = aqueue.sync_q
self.aqueue = aqueue.async_q
else:
self.queue = Queue()
self.aqueue = None
beam_width = generation_request.sampling_config.beam_width
self.beam_search_enabled = beam_width > 1
self._token_ids = [[] for _ in range(beam_width)]
self.logprobs = []
self.last_text = ""
@property
def token_ids(self):
if not self.beam_search_enabled:
return self._token_ids[0]
return self._token_ids
def handle_generation_msg(self,
tensors: Dict[str, np.ndarray] | List[List[int]],
error: str):
if error:
raise RuntimeError(error)
if isinstance(tensors, list):
# Executor API format.
new_ids = tensors
else:
new_ids = tensors["output_ids"].squeeze(0).tolist()
for idx, beam_ids in enumerate(new_ids):
self._token_ids[idx] += beam_ids
def result_step(self, timeout: Optional[float] = None):
_, tensors, self._done, error = self.queue.get(timeout=timeout)
self.handle_generation_msg(tensors, error)
async def aresult_step(self):
assert self.aqueue is not None
_, tensors, self._done, error = await self.aqueue.get()
self.handle_generation_msg(tensors, error)
@property
def text_diff(self) -> str:
assert self.streaming is not None
assert not self.beam_search_enabled, "text_diff is not supported with beam_search"
new_txt = self.text
diff = new_txt[len(self.last_text):]
self.last_text = new_txt
return diff
@property
def text(self) -> Union[str, List[str]]:
if self.tokenizer is None:
return ''
texts = self.tokenizer.batch_decode(self._token_ids)
if not self.beam_search_enabled:
return texts[0]
return texts
def result(self, timeout: Optional[float] = None) -> "GenerationResult":
while not self._done:
self.result_step(timeout)
return self
async def aresult(self) -> "GenerationResult":
while not self._done:
await self.aresult_step()
return self
def __iter__(self):
return self
def __next__(self):
if self._done:
raise StopIteration
self.result_step()
return self
def __aiter__(self):
return self
async def __anext__(self):
if self._done:
raise StopAsyncIteration
await self.aresult_step()
return self
def running(self) -> bool:
return not self._done
def cancelled(self) -> bool:
return self._cancelled
def cancel(self):
raise NotImplementedError
def done(self) -> bool:
return self._done
def exception(self, timeout: Optional[float] = None):
try:
self.result(timeout)
except RuntimeError as e:
return e
class GenerationExecutor(ABC):
TERMINATE_REQUEST_ID = 0
def __init__(self):
self.id_counter = GenerationExecutor.TERMINATE_REQUEST_ID + 1
self.tokenizer = None
def generate_id(self) -> int:
gen_id = self.id_counter
# underlying C type is uint64
uint64_max = 2**64 - 1
self.id_counter = (self.id_counter + 1) % uint64_max
if self.id_counter == GenerationExecutor.TERMINATE_REQUEST_ID:
self.id_counter += 1
return gen_id
@abstractmethod
def submit(self, request: GenerationRequest) -> GenerationResult:
pass
def generate_async(
self, prompt: Union[str, List[int], List[str], List[List[int]]],
streaming: bool, sampling_config: Union[SamplingConfig,
List[SamplingConfig]]
) -> Union[GenerationResult, List[GenerationResult]]:
unbatched = isinstance(prompt, str) or (isinstance(prompt, list)
and isinstance(prompt[0], int))
string_input = isinstance(
prompt, str) or (not unbatched and isinstance(prompt[0], str))
tokenizer = self.tokenizer if string_input else None
if unbatched:
results = self.submit(
GenerationRequest(prompt,
streaming,
tokenizer,
sampling_config=sampling_config))
else:
sampling_config = [sampling_config] * len(prompt) if not isinstance(
sampling_config, list) else sampling_config
results = []
for idx, p in enumerate(prompt):
results.append(
self.submit(
GenerationRequest(
p,
streaming,
tokenizer,
sampling_config=sampling_config[idx])))
return results
def generate(
self,
prompt: Union[str, List[int], List[str], List[List[int]]],
streaming: bool = False,
sampling_config: Optional[Union[SamplingConfig,
List[SamplingConfig]]] = None
) -> Union[GenerationResult, List[GenerationResult]]:
futures = self.generate_async(prompt,
streaming=streaming,
sampling_config=sampling_config)
if isinstance(futures, GenerationRequest):
futures.result()
else:
for future in futures:
future.result()
return futures
@abstractmethod
def shutdown(self):
pass
@abstractmethod
def get_stats(self):
pass
@abstractmethod
async def aget_stats(self):
pass
@staticmethod
def create(
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
model_world_size: int = 1,
world_size: int = 0,
mpi_session: Optional[MpiSession] = None,
use_executor_bindings: bool = False,
) -> Union["GenerationExecutorProxy", "GenerationExecutorWorker",
"ExecutorBindingsProxy", "ExecutorBindingsWorker"]:
if world_size == 0:
world_size = mpi_world_size()
if world_size > 1 and world_size < model_world_size:
raise RuntimeError(
"Cannot instantiate Generator for engine built "
f"for {model_world_size} ranks, while currently running "
f"on {world_size} ranks.")
worker_kwargs = {
"engine_dir": engine_dir,
"tokenizer": tokenizer,
"max_beam_width": max_beam_width,
"executor_type": executor_type,
"executor_policy": executor_policy,
"executor_config": executor_config,
}
if world_size == 1 and model_world_size > 1:
return ExecutorBindingsProxy(
worker_kwargs,
model_world_size=model_world_size,
mpi_session=mpi_session
) if use_executor_bindings else GenerationExecutorProxy(
worker_kwargs,
model_world_size=model_world_size,
mpi_session=mpi_session)
return ExecutorBindingsWorker(
**worker_kwargs
) if use_executor_bindings else GenerationExecutorWorker(
**worker_kwargs)
class GenerationExecutorWorker(GenerationExecutor):
class WorkerExit(GeneratorExit):
pass
@dataclass
class WorkerInitStatus:
ok: bool
info: Optional[str] = None
rank: Optional[int] = None
def __init__(
self,
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase, None],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
) -> None:
super().__init__()
self.engine = None
self.tokenizer = tokenizer_factory(tokenizer)
# NOTE: underscore variables are used for communication with the C++ runtime
self._requests: List[tllm.InferenceRequest] = []
self._results: Dict[int, GenerationResult] = {}
self._cancelled_ids: Set[int] = set()
self._pending: set = set()
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
"""
Note: in single-node only (when using .block_subordinates()) the termination
process is as follow:
0. Nodes > 0 (main threads) directly wait on termination_ack. Node 0 continues execution.
1. Node 0 (main thread) is finishing and must close GptManager.
2. Node 0 (main thread) sets _termination_requested and wait on termination_ack
3. Node 0 (BatchManager thread) exchange _termination_requested via MPI.bcast with all other nodes.
4. All nodes (BatchManager threads) signal the _termination_ack semaphore and set _termination_pending to avoid fetching new requests.
5. All nodes (main threads) go through _termination_ack and ask BatchManager to join its threads.
"""
self._block_subordinates = False
self._termination_requested = False
self._termination_pending = False
self._termination_ack = Semaphore(0)
self._termination_lock = Lock()
self.result_queue = None
self.comm = MPI.COMM_WORLD
self.rank = mpi_rank()
self.engine = tllm.GptManager(engine_dir, executor_type, max_beam_width,
executor_policy, self.fetch_requests,
self.handle_response,
self.get_cancelled_ids, self.handle_stats,
executor_config,
GenerationExecutor.TERMINATE_REQUEST_ID)
def shutdown(self):
if self.engine is not None:
self.engine.shutdown()
self.engine = None
def block_subordinates(self):
self._block_subordinates = True
if self.rank != 0:
self._termination_ack.acquire()
self.shutdown()
raise self.WorkerExit(
"block_subordinates() should be used in a `with GenerationExecutorWorker() as ...:` block"
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback) -> bool:
del exc_value, traceback # unused arguments
if self._block_subordinates and self.rank == 0:
if self.rank == 0:
self._termination_lock.acquire()
self._termination_requested = True
self._termination_lock.release()
self._termination_ack.acquire()
self.shutdown()
return exc_type is None or exc_type == GenerationExecutorWorker.WorkerExit
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
"""
result = GenerationResult(request, request.tokenizer)
req_id = self.generate_id()
request.set_id(req_id)
self._results[req_id] = result
self._pending.add(req_id)
self._requests.append(request.as_inference_request())
return result
def get_stats(self):
return self.stats_queue.get()
async def aget_stats(self):
assert self.stats_aqueue is not None
return await self.stats_aqueue.get()
def wait_first_completed(
self, futures: List[GenerationResult]
) -> Generator[GenerationResult, None, None]:
wait_set = set(f.generation_request.id for f in futures)
# clear already-finished requests
for f in futures:
if f._done:
wait_set.remove(f.generation_request.id)
yield f
# wait remaining active requests
while len(wait_set) > 0:
req_id = wait_set.pop()
if req_id not in self._pending:
yield self._results[req_id]
else:
wait_set.add(req_id)
def set_result_queue(self, queue):
self.result_queue = queue
def return_queue(self, req_id: int):
""" If a centralized result queue is registered (used for communication with the proxy)
send the message there.
Otherwise, push the result directly in the GenerationResult queue.
"""
if self.result_queue is not None:
return self.result_queue
return self._results[req_id].queue
# Callbacks for BatchManager
def fetch_requests(self, max_num_sequences) -> List[tllm.InferenceRequest]:
if self._termination_pending:
return []
fetched = []
if not self._block_subordinates or self.rank == 0:
for _ in range(max_num_sequences):
if len(self._requests) == 0:
break
fetched.append(self._requests.pop())
if self._block_subordinates:
self._termination_lock.acquire()
self._termination_requested = self.comm.bcast(
self._termination_requested)
if self._termination_requested:
self._termination_ack.release()
self._termination_pending = True
self._termination_lock.release()
fetched = self.comm.bcast(fetched)
return fetched
def handle_response(self, req_id: int, tensors: List[tllm.NamedTensor],
finished: bool, err: str) -> None:
if self._block_subordinates and self.rank != 0:
return
self.return_queue(req_id).put((req_id, {
t.name: t.tensor.numpy()
for t in tensors if t.tensor is not None
}, finished, err))
if finished:
self._pending.remove(req_id)
def get_cancelled_ids(self) -> Set[int]:
return self._cancelled_ids
def handle_stats(self, stats: str):
while self.stats_queue.full():
self.stats_queue.get()
self.stats_queue.put(stats)
def __del__(self):
self.shutdown()
class Fifo:
def __init__(self, address: Tuple[str, int, bytes], *, is_server: bool):
self.address, self.authkey = (address[0], address[1]), address[2]
self.is_server = is_server
self.conn = None
if is_server:
self.listener = Listener(self.address,
'AF_INET',
authkey=self.authkey)
def setup(self):
if self.is_server:
self.conn = self.listener.accept()
else:
self.conn = Client(self.address, authkey=self.authkey)
def put(self, obj: Any):
if self.conn is None:
self.setup()
self.conn.send(obj)
def get(self) -> Any:
if self.conn is None:
self.setup()
return self.conn.recv()
class GenerationExecutorProxy(GenerationExecutor):
def __init__(
self,
workers_kwargs,
model_world_size: int = 1,
mpi_session: Optional[MpiSession] = None,
) -> None:
super().__init__()
self.workers_started = False
self.tokenizer = tokenizer_factory(workers_kwargs["tokenizer"])
request_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_queue = Fifo(request_queue_addr, is_server=True)
result_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.result_queue = Fifo(result_queue_addr, is_server=True)
self._results: Dict[int, GenerationResult] = {}
if mpi_session is None:
self.mpi_session = MpiSession(n_workers=model_world_size)
else:
self.mpi_session = mpi_session
self.model_world_size = model_world_size
self.workers_kwargs = workers_kwargs
self.workers_kwargs.update({
"request_queue_addr": request_queue_addr,
"result_queue_addr": result_queue_addr,
})
self.dispatcher = Thread(target=self.dispatcher_thread)
@print_traceback_on_error
@staticmethod
def workers_main(
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase],
request_queue_addr: Tuple[str, int, bytes],
result_queue_addr: Tuple[str, int, bytes],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams()
) -> None:
result_queue = None
if mpi_rank() == 0:
# Only rank0 need to communicate with the Python main process
request_queue = Fifo(request_queue_addr, is_server=False)
result_queue = Fifo(result_queue_addr, is_server=False)
init_status = None
try:
executor = GenerationExecutorWorker(engine_dir, tokenizer,
max_beam_width, executor_type,
executor_policy,
executor_config)
except Exception as e:
error_info = f"{str(e)}\nTraceback: {traceback.format_exc()}"
init_status = GenerationExecutorWorker.WorkerInitStatus(
ok=False, info=error_info, rank=mpi_rank())
# Either one of the failed rank will occupy the result_queue comm and make the Python main process raise exception
result_queue.put(init_status)
raise e
else:
init_status = GenerationExecutorWorker.WorkerInitStatus(ok=True)
finally:
init_statuses = mpi_comm().gather(init_status, root=0)
if mpi_rank() == 0 and all(status.ok for status in init_statuses):
result_queue.put(init_status)
with ContextManager(executor) as executor:
executor.block_subordinates()
if mpi_rank() == 0:
executor.set_result_queue(result_queue)
while (req := request_queue.get()) is not None:
executor.submit(req)
if mpi_rank() == 0:
result_queue.put(None)
def dispatcher_thread(self):
""" Collect centralized results from result queue and dispatch them in the
correct GenerationResult queues. """
while (res := self.result_queue.get()) is not None:
id, tensors, finished, err = res
self._results[id].queue.put(
(id,
{name: torch.tensor(value)
for name, value in tensors.items()}, finished, err))
def start(self):
self.mpi_futures = self.mpi_session.submit(
GenerationExecutorProxy.workers_main, **self.workers_kwargs)
self.workers_started = True
# It will get the first failure status or get a success status if all ranks are successful
ack: GenerationExecutorWorker.WorkerInitStatus = self.result_queue.get()
if not ack.ok:
raise RuntimeError(
f"#node-{ack.rank}: worker initialization failed: {ack.info}")
self.dispatcher.start()
def shutdown(self):
if not self.workers_started:
return
self.request_queue.put(None)
for f in self.mpi_futures:
f.result()
self.dispatcher.join()
self.workers_started = False
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
Forwards the request to the workers through the request queue.
"""
if not self.workers_started:
self.start()
req_id = self.generate_id()
request.set_id(req_id)
tokenizer = request.tokenizer
result = GenerationResult(request, tokenizer)
self._results[req_id] = result
# no need to send the tokenizer to the executor,
# saves communication time
request.tokenizer = None
self.request_queue.put(request)
request.tokenizer = tokenizer
return result
def get_stats(self):
# TODO: https://jirasw.nvidia.com/browse/TRTLLM-514
pass
async def aget_stats(self):
# TODO: https://jirasw.nvidia.com/browse/TRTLLM-514
pass
def __del__(self):
self.shutdown()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.shutdown()
return False
class ExecutorBindingsWorker(GenerationExecutor):
class WorkerExit(GeneratorExit):
pass
def __init__(
self,
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase, None],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams(),
) -> None:
super().__init__()
self.engine = None
self.tokenizer = tokenizer_factory(tokenizer)
self._stats = None
self._results: Dict[int, GenerationResult] = {}
self._pending: set = set()
self.result_queue = None
self.rank = mpi_rank()
# Convert config to Executor config.
scheduler_config = tllme.SchedulerConfig(
self.convert_executor_policy(executor_policy))
config = tllme.ExecutorConfig(
max_beam_width,
batching_type=self.convert_executor_type(executor_type),
scheduler_config=scheduler_config)
# Translate additional options from TrtGptModelOptionalParams
config.kv_cache_config = tllme.KvCacheConfig(
enable_block_reuse=executor_config.kv_cache_config.
enable_block_reuse,
max_tokens=executor_config.kv_cache_config.max_tokens,
max_attention_window=executor_config.kv_cache_config.
max_attention_window,
sink_token_length=executor_config.kv_cache_config.sink_token_length,
free_gpu_memory_fraction=executor_config.kv_cache_config.
free_gpu_memory_fraction)
if executor_config.device_ids:
config.parallel_config = tllme.ParallelConfig(
device_ids=executor_config.device_ids)
config.enable_chunked_context = executor_config.enable_chunked_context
config.normalize_log_probs = executor_config.normalize_log_probs
if executor_config.decoding_mode:
config.decoding_mode = self.convert_decoding_mode(
executor_config.decoding_mode)
assert not executor_config.enable_trt_overlap, "enable_trt_overlap is not supported."
self.engine = tllme.Executor(engine_dir,
tllme.ModelType.DECODER_ONLY,
executor_config=config)
self.awaiter_thread = Thread(target=self.awaiter_loop)
self.running = True
def convert_executor_type(self, executor_type):
batching_type_map = {
tllm.TrtGptModelType.V1: tllme.BatchingType.STATIC,
tllm.TrtGptModelType.InflightFusedBatching:
tllme.BatchingType.INFLIGHT,
}
assert executor_type in batching_type_map, f"executor_type={executor_type} is not supported."
return batching_type_map[executor_type]
def convert_executor_policy(self, executor_policy):
policy_map = {
tllm.SchedulerPolicy.MAX_UTILIZATION:
tllme.SchedulerPolicy.MAX_UTILIZATION,
tllm.SchedulerPolicy.GUARANTEED_NO_EVICT:
tllme.SchedulerPolicy.GUARANTEED_NO_EVICT,
}
assert executor_policy in policy_map, f"executor_policy={executor_policy} is not supported."
return policy_map[executor_policy]
def convert_decoding_mode(self, decoding_mode):
if decoding_mode.is_none():
return tllme.DecodingMode.NONE
elif decoding_mode.is_top_k() and not decoding_mode.is_top_p():
return tllme.DecodingMode.TOP_K
elif decoding_mode.is_top_p() and not decoding_mode.is_top_k():
return tllme.DecodingMode.TOP_P
elif decoding_mode.is_beam_search():
return tllme.DecodingMode.BEAM_SEARCH
elif decoding_mode.is_medusa():
return tllme.DecodingMode.MEDUSA
elif decoding_mode.is_top_k_and_top_p():
return tllme.DecodingMode.TOP_K_TOP_P
raise ValueError(f"decoding_mode={decoding_mode} is not supported.")
def create_stats_queue(self):
# Stats queue is created during first submission to ensure event loop exists if it is needed.
if not self._stats:
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
def set_result_queue(self, queue):
self.result_queue = queue
def return_queue(self, req_id: int):
""" If a centralized result queue is registered (used for communication with the proxy)
send the message there.
Otherwise, push the result directly in the GenerationResult queue.
"""
if self.result_queue is not None:
return self.result_queue
return self._results[req_id].queue
def start_awaiter_thread(self):
if self.engine.can_enqueue_requests(
) and not self.awaiter_thread.is_alive():
self.awaiter_thread.start()
def awaiter_loop(self):
""" Gets responses from executor and places in the return queue."""
while self.running:
# Get responses and place in queue.
for response in self.engine.await_responses(
timeout=datetime.timedelta(milliseconds=100)):
req_id = response.request_id
if response.has_error():
self.return_queue(req_id).put(
(req_id, None, None, response.error_msg))
else:
self.return_queue(req_id).put(
(response.request_id, response.result.output_token_ids,
response.result.is_final, None))
if response.result.is_final:
self._pending.remove(req_id)
# Get stats and place in queue.
for stats in self.engine.get_latest_iteration_stats():
while self.stats_queue.full():
self.stats_queue.get()
self.stats_queue.put(stats.to_json_str())
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
"""
if self.rank != 0:
raise NotImplementedError("Only rank 0 can submit requests.")
self.create_stats_queue()
self.start_awaiter_thread()
req_id = self.engine.enqueue_request(request.as_executor_request())
request.set_id(req_id)
result = GenerationResult(request, request.tokenizer)
self._results[req_id] = result
self._pending.add(req_id)
return result
def get_stats(self):
return self.stats_queue.get()
async def aget_stats(self):
assert self.stats_aqueue is not None
return await self.stats_aqueue.get()
def shutdown(self):
if self.engine is not None:
self.running = False
if self.engine.can_enqueue_requests():
self.awaiter_thread.join()
self.engine.shutdown()
self.engine = None
def block_subordinates(self):
if self.rank != 0:
raise self.WorkerExit(
"block_subordinates() should be used in a `with ExecutorBindingsWorker() as ...:` block"
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback) -> bool:
self.shutdown()
return exc_type is None or exc_type == ExecutorBindingsWorker.WorkerExit
def __del__(self):
self.shutdown()
def wait_first_completed(
self, futures: List[GenerationResult]
) -> Generator[GenerationResult, None, None]:
wait_set = set(f.generation_request.id for f in futures)
# clear already-finished requests
for f in futures:
if f._done:
wait_set.remove(f.generation_request.id)
yield f
# wait remaining active requests
while len(wait_set) > 0:
req_id = wait_set.pop()
if req_id not in self._pending:
yield self._results[req_id]
else:
wait_set.add(req_id)
class ExecutorBindingsProxy(GenerationExecutor):
def __init__(
self,
workers_kwargs,
model_world_size: int = 1,
mpi_session: Optional[MpiSession] = None,
) -> None:
super().__init__()
self.workers_started = False
self.tokenizer = tokenizer_factory(workers_kwargs["tokenizer"])
request_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_queue = Fifo(request_queue_addr, is_server=True)
# Return request id back to dispatcher
request_id_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_id_queue = Fifo(request_id_queue_addr, is_server=True)
result_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.result_queue = Fifo(result_queue_addr, is_server=True)
self._results: Dict[int, GenerationResult] = {}
if mpi_session is None:
self.mpi_session = MpiSession(n_workers=model_world_size)
else:
self.mpi_session = mpi_session
self.model_world_size = model_world_size
self.workers_kwargs = workers_kwargs
self.workers_kwargs.update({
"request_queue_addr": request_queue_addr,
"request_id_queue_addr": request_id_queue_addr,
"result_queue_addr": result_queue_addr,
})
self.dispatcher = Thread(target=self.dispatcher_thread)
@staticmethod
def workers_main(
engine_dir: Path,
tokenizer: Union[str, Path, TokenizerBase],
request_queue_addr: Tuple[str, int, bytes],
request_id_queue_addr: Tuple[str, int, bytes],
result_queue_addr: Tuple[str, int, bytes],
max_beam_width: int = 1,
executor_type: tllm.TrtGptModelType = tllm.TrtGptModelType.
InflightFusedBatching,
executor_policy: tllm.SchedulerPolicy = tllm.SchedulerPolicy.
GUARANTEED_NO_EVICT,
executor_config: tllm.TrtGptModelOptionalParams = tllm.
TrtGptModelOptionalParams()
) -> None:
result_queue = None
executor = ExecutorBindingsWorker(engine_dir, tokenizer, max_beam_width,
executor_type, executor_policy,
executor_config)
if mpi_rank() == 0:
request_queue = Fifo(request_queue_addr, is_server=False)
request_id_queue = Fifo(request_id_queue_addr, is_server=False)
result_queue = Fifo(result_queue_addr, is_server=False)
result_queue.put(True) # ack that we started
executor.set_result_queue(result_queue)
while (req := request_queue.get()) is not None:
result = executor.submit(req)
request_id_queue.put(result.generation_request.id)
result_queue.put(None)
def dispatcher_thread(self):
""" Collect centralized results from result queue and dispatch them in the
correct GenerationResult queues. """
while (res := self.result_queue.get()) is not None:
req_id = res[0]
self._results[req_id].queue.put(res)
def start(self):
self.mpi_futures = self.mpi_session.submit(
ExecutorBindingsProxy.workers_main, **self.workers_kwargs)
self.workers_started = True
ack = Thread(target=lambda: self.result_queue.get())
ack.start()
ack.join(timeout=60)
if ack.is_alive():
raise RuntimeError("Executor seems to have crashed")
self.dispatcher.start()
def shutdown(self):
if not self.workers_started:
return
self.request_queue.put(None)
for f in self.mpi_futures:
f.result()
self.dispatcher.join()
self.workers_started = False
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
Forwards the request to the workers through the request queue.
"""
if not self.workers_started:
self.start()
tokenizer = request.tokenizer
# no need to send the tokenizer to the executor,
# saves communication time
request.tokenizer = None
self.request_queue.put(request)
# Await req id.
req_id = self.request_id_queue.get()
request.set_id(req_id)
result = GenerationResult(request, tokenizer)
self._results[req_id] = result
request.tokenizer = tokenizer
return result
def get_stats(self):
# TODO: https://jirasw.nvidia.com/browse/TRTLLM-514
pass
async def aget_stats(self):
# TODO: https://jirasw.nvidia.com/browse/TRTLLM-514
pass
def __del__(self):
self.shutdown()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.shutdown()
return False