mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
191 lines
7.3 KiB
Python
191 lines
7.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import Tensor, recv, send
|
|
from ...layers import (Attention, AttentionMaskType, ColumnLinear, Embedding,
|
|
GatedMLP, RmsNorm)
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
PretrainedConfig)
|
|
|
|
|
|
class QWenDecoderLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
dtype = config.dtype
|
|
tp_group = config.mapping.tp_group
|
|
tp_size = config.mapping.tp_size
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
position_embedding_type=config.position_embedding_type,
|
|
rotary_embedding_base=config.rotary_base,
|
|
rotary_embedding_scaling=config.rotary_scaling,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode,
|
|
dense_bias=False)
|
|
|
|
# Qwen's real inter_size is one half of what's in the config while Qwen2 is aligned with the config
|
|
intermediate_size = config.intermediate_size // 2 if self.config.qwen_type == 'qwen' else config.intermediate_size
|
|
|
|
self.mlp = GatedMLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=dtype,
|
|
bias=False,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode)
|
|
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=dtype)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
)
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
hidden_states = residual + hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class QWenModel(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.mapping = config.mapping
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = DecoderLayerList(QWenDecoderLayer, config)
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None):
|
|
|
|
ptuning_args = [
|
|
prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if prompt_embedding_table is not None else []
|
|
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
|
|
hidden_states = self.layers.forward(hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class QWenForCausalLM(DecoderModelForCausalLM):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
self.check_config(config)
|
|
transformer = QWenModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
self.quant_mode = config.quant_mode
|
|
self.mapping = config.mapping
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
def check_config(self, config):
|
|
config.set_if_not_exist('rotary_base', 10000.0)
|
|
config.set_if_not_exist('rotary_scaling', None)
|