TensorRT-LLMs/tests/functional/test_gather_nd.py
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

243 lines
9.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
# isort: off
import torch
# isort: on
from parameterized import parameterized
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
(
[
[91, 92, 93, 95, 94, 96, 97, 00,
00], # 7 effective tokens and 2 ignored.
[93, 94, 95, 92, 95, 96, 93, 97, 96], # 9 effective tokens
],
[
[
[0, 1, 2, 3],
[0, 1, 4, 5],
[0, 1, 2, 6],
],
[
[0, 1, 2, 3],
[0, 4, 5, 6],
[0, 1, 7, 8],
],
],
[ # Assuming a batch of two sequences, each has 3 beams of 4 tokens.
[
[91, 92, 93, 95],
[91, 92, 94, 96],
[91, 92, 93, 97],
],
[
[93, 94, 95, 92],
[93, 95, 96, 93],
[93, 94, 97, 96],
],
],
),
([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], [[1, 0, 1], [0,
1, 0]], [[[2, 3],
[0, 1],
[2, 3]],
[[4, 5],
[6, 7],
[4, 5]]]),
(
torch.rand((2, 9, 4), dtype=torch.float32),
torch.tensor([[[0, 1, 2, 3, 4, 5], [0, 1, 3, 4, 5, 6],
[0, 1, 4, 5, 6, 7], [0, 2, 3, 4, 6, 8]],
[[0, 1, 2, 3, 4, 5], [0, 1, 3, 4, 5, 7],
[0, 2, 3, 5, 6, 7], [0, 3, 4, 5, 6, 7]]]),
[],
),
])
def test_gatherND(self, data, indices, ref):
data = data if isinstance(data, torch.Tensor) else torch.tensor(data)
indices = indices if isinstance(indices,
torch.Tensor) else torch.tensor(indices)
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref)
indices = indices.unsqueeze(-1) # needed for TRT gatherND
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
d = Tensor(name='d',
shape=data.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
idx = Tensor(name='idx',
shape=indices.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
output = tensorrt_llm.functional.gather_nd(d, idx, 1).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'd': data.numpy(),
'idx': indices.numpy(),
})
# compare diff
indices = indices.squeeze(-1)
tref = torch.stack([data[i, indices[i]] for i in range(data.shape[0])])
if ref.numel() == 0:
np.testing.assert_allclose(tref, outputs['output'], atol=1e-5)
else:
np.testing.assert_allclose(ref, outputs['output'], atol=1e-5)
np.testing.assert_allclose(ref, tref, atol=1e-5)
return
@parameterized.expand([(
[[91, 92, 93, 95, -1, -1, 94, 96, -1, -1, -1, 97],
[93, 94, 95, 92, -1, 95, 96, 93, -1, -1, 97, 96]],
[
# [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [0, 1, 2, 3, 6, 7, 11, 0, 1, 2, 3, 5, 6, 7, 10, 11]
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[0, 6],
[0, 7],
[0, 11],
[1, 0],
[1, 1],
[1, 2],
[1, 3],
[1, 5],
[1, 6],
[1, 7],
[1, 10],
[1, 11]
],
[91, 92, 93, 95, 94, 96, 97, 93, 94, 95, 92, 95, 96, 93, 97, 96])])
def test_gatherND_b0(self, data, indices, ref):
data = data if isinstance(data, torch.Tensor) else torch.tensor(data)
indices = indices if isinstance(indices,
torch.Tensor) else torch.tensor(indices)
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref)
# indices = indices.unsqueeze(-1) # needed for TRT gatherND
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
d = Tensor(name='d',
shape=data.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
idx = Tensor(name='idx',
shape=indices.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
output = tensorrt_llm.functional.gather_nd(d, idx, 0).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'd': data.numpy(),
'idx': indices.numpy(),
})
# compare diff
# indices = indices.squeeze(-1)
tref = data[indices[:, 0], indices[:, 1]]
if ref.numel() == 0:
np.testing.assert_allclose(tref, outputs['output'], atol=1e-5)
else:
np.testing.assert_allclose(ref, outputs['output'], atol=1e-5)
np.testing.assert_allclose(ref, tref, atol=1e-5)
return
####
def test_gatherND_selectH(self): #, data, indices, ref):
# This usecase is used to gather in ReDrafter for validated end-tokens ( diff stopping point for diff seqs )
data = torch.rand((2, 9, 4), dtype=torch.float32)
indices = torch.randint(9, size=(2, ), dtype=torch.int32)
ref = []
data = data if isinstance(data, torch.Tensor) else torch.tensor(data)
indices = indices if isinstance(indices,
torch.Tensor) else torch.tensor(indices)
ref = ref if isinstance(ref, torch.Tensor) else torch.tensor(ref)
indices = torch.stack([torch.arange(2, dtype=torch.int32), indices],
dim=1)
# print(data)
# print(indices)
# indices = indices.unsqueeze(-1) # needed for TRT gatherND
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
d = Tensor(name='d',
shape=data.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(data.dtype))
idx = Tensor(name='idx',
shape=indices.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(indices.dtype))
output = tensorrt_llm.functional.gather_nd(d, idx, 0).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'd': data.numpy(),
'idx': indices.numpy(),
})
# compare diff
# indices = indices.squeeze(-1)
tref = data[indices[:, 0], indices[:, 1]]
# tref = torch.stack([data[i, indices[i]] for i in range(data.shape[0])])
if ref.numel() == 0:
np.testing.assert_allclose(tref, outputs['output'], atol=1e-5)
else:
np.testing.assert_allclose(ref, outputs['output'], atol=1e-5)
np.testing.assert_allclose(ref, tref, atol=1e-5)
# print(tref.numpy())
# print(outputs['output'])
# assert False, "FORCED"
return