TensorRT-LLMs/tests/functional/test_gelu.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

90 lines
2.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import math
import os
import sys
import unittest
import torch
from parameterized import parameterized
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_bf16_pre_ampere, unittest_name_func
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@staticmethod
def gelu(x, dtype):
if dtype == 'float32':
res = torch.nn.functional.gelu(x)
else:
res = 0.5 * x * (1 + torch.tanh(
math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
return res
@parameterized.expand(itertools.product(
('float32', 'float16', 'bfloat16'),
(False, True),
),
name_func=unittest_name_func)
def test_gelu(self, dtype, strongly_typed):
# Skip tests that are not supported in pre-ampere architecture
skip_bf16_pre_ampere(dtype)
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
x_shape = (12, 12, 96, 96)
x_data = torch.rand(x_shape, dtype=torch_dtype)
# construct trt network
builder = tensorrt_llm.Builder()
builder.strongly_typed = strongly_typed
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.gelu(x).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'x': x_data})
out = outputs['output'].to(torch_dtype)
# Reference
ref = self.gelu(x_data, dtype)
if dtype == 'bfloat16':
atol, rtol = 1e-5, 2e-2
else:
atol, rtol = 1e-5, 2e-3
torch.testing.assert_close(out, ref, atol=atol, rtol=rtol)
if __name__ == '__main__':
unittest.main()