TensorRT-LLMs/cpp/tensorrt_llm/plugins/weightOnlyQuantMatmulPlugin/weightOnlyQuantMatmulPlugin.cpp
Kaiyu Xie 6755a3f077
Update TensorRT-LLM (#422)
* Update TensorRT-LLM

---------

Co-authored-by: Tltin <TltinDeng01@gmail.com>
Co-authored-by: zhaohb <zhaohbcloud@126.com>
Co-authored-by: Bradley Heilbrun <brad@repl.it>
Co-authored-by: nqbao11 <nqbao11.01@gmail.com>
Co-authored-by: Nikhil Varghese <nikhil@bot-it.ai>
2023-11-18 00:05:54 +08:00

479 lines
17 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "weightOnlyQuantMatmulPlugin.h"
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/enabled.h"
using namespace nvinfer1;
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels::cutlass_kernels;
using tensorrt_llm::plugins::WeightOnlyQuantMatmulPluginCreator;
using tensorrt_llm::plugins::WeightOnlyQuantMatmulPlugin;
using tensorrt_llm::plugins::WeightOnlyQuantGemmPluginProfiler;
using tensorrt_llm::plugins::read;
using tensorrt_llm::plugins::write;
static const char* WOQ_MATMUL_PLUGIN_VERSION{"1"};
static const char* WOQ_MATMUL_PLUGIN_NAME{"WeightOnlyQuantMatmul"};
PluginFieldCollection WeightOnlyQuantMatmulPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> WeightOnlyQuantMatmulPluginCreator::mPluginAttributes;
void WeightOnlyQuantGemmPluginProfiler::runTactic(int m, int n, int k,
const WeightOnlyQuantGemmPluginProfiler::Config& tactic, char* workspace, const cudaStream_t& stream)
{
const int originalN = n * getWeightTypeMultiplier(mWeightTypeId);
half* actPtr = reinterpret_cast<half*>(workspace);
int8_t* weightPtr
= reinterpret_cast<int8_t*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(actPtr), m * k * sizeof(half)));
half* scalesPtr = reinterpret_cast<half*>(
nextWorkspacePtr(reinterpret_cast<int8_t*>(weightPtr), originalN * k * sizeof(int8_t)));
half* outputPtr
= reinterpret_cast<half*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(scalesPtr), originalN * sizeof(half)));
char* workspacePtr
= reinterpret_cast<char*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(outputPtr), m * originalN * sizeof(half)));
const int wsSize = mRunner->getWorkspaceSize(m, n, k);
if (mWeightTypeId == WeightTypeId::INT8)
{
mRunner->gemm(actPtr, weightPtr, scalesPtr, outputPtr, m, originalN, k, tactic, workspacePtr, wsSize, stream);
}
else
{
mRunner->gemm(actPtr, reinterpret_cast<cutlass::uint4b_t*>(weightPtr), scalesPtr, outputPtr, m, originalN, k,
tactic, workspacePtr, wsSize, stream);
}
}
void WeightOnlyQuantGemmPluginProfiler::computeTmpSize(int maxM, int n, int k)
{
const int originalN = n * getWeightTypeMultiplier(mWeightTypeId);
std::vector<size_t> workspaces = {
maxM * k * sizeof(half), // A
originalN * k * sizeof(int8_t), // B
originalN * sizeof(half), // scales
maxM * originalN * sizeof(half), // C
mRunner->getWorkspaceSize(maxM, n, k) // workspace
};
size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
setTmpWorkspaceSizeInBytes(bytes);
}
std::vector<WeightOnlyQuantGemmPluginProfiler::Config> WeightOnlyQuantGemmPluginProfiler::getTactics(
int m, int n, int k) const
{
return mRunner->getConfigs();
}
WeightOnlyQuantMatmulPlugin::WeightOnlyQuantMatmulPlugin(nvinfer1::DataType type, WeightTypeId weightTypeId,
const WeightOnlyQuantMatmulPlugin::PluginProfilerPtr& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
init(type, weightTypeId);
}
// Parameterized constructor
WeightOnlyQuantMatmulPlugin::WeightOnlyQuantMatmulPlugin(
const void* data, size_t length, const WeightOnlyQuantMatmulPlugin::PluginProfilerPtr& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
const char *d = reinterpret_cast<const char*>(data), *a = d;
nvinfer1::DataType type;
WeightTypeId weightTypeId;
read(d, type);
read(d, weightTypeId);
read(d, mDims);
init(type, weightTypeId);
mPluginProfiler->deserialize(d, mDims, mGemmId);
TLLM_CHECK(d == a + length);
}
void WeightOnlyQuantMatmulPlugin::init(nvinfer1::DataType type, WeightTypeId weightTypeId)
{
mType = type;
mWeightTypeId = weightTypeId;
if (mWeightTypeId == WeightTypeId::INT8)
{
if (mType == nvinfer1::DataType::kHALF)
{
m_weightOnlyGemmRunner = std::make_shared<
CutlassFpAIntBGemmRunner<half, uint8_t, cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
}
#if defined(ENABLE_BF16)
else if (mType == nvinfer1::DataType::kBF16)
{
m_weightOnlyGemmRunner = std::make_shared<
CutlassFpAIntBGemmRunner<__nv_bfloat16, uint8_t, cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
}
#endif
else
{
TLLM_CHECK(false);
}
mCudaKernelEnabled
= tensorrt_llm::kernels::isWeightOnlyBatchedGemvEnabled(tensorrt_llm::kernels::WeightOnlyQuantType::Int8b);
}
else if (mWeightTypeId == WeightTypeId::INT4)
{
if (mType == nvinfer1::DataType::kHALF)
{
m_weightOnlyGemmRunner = std::make_shared<
CutlassFpAIntBGemmRunner<half, cutlass::uint4b_t, cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
}
#if defined(ENABLE_BF16)
else if (mType == nvinfer1::DataType::kBF16)
{
m_weightOnlyGemmRunner = std::make_shared<CutlassFpAIntBGemmRunner<__nv_bfloat16, cutlass::uint4b_t,
cutlass::WeightOnlyQuantOp::PER_COLUMN_SCALE_ONLY>>();
}
#endif
else
{
TLLM_CHECK(false);
}
mCudaKernelEnabled
= tensorrt_llm::kernels::isWeightOnlyBatchedGemvEnabled(tensorrt_llm::kernels::WeightOnlyQuantType::Int4b);
}
else
{
TLLM_CHECK(false);
}
mPluginProfiler->setWeightTypeId(mWeightTypeId);
mGemmId = GemmIdCore(mDims.n, mDims.k, mType);
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* WeightOnlyQuantMatmulPlugin::clone() const noexcept
{
auto* plugin = new WeightOnlyQuantMatmulPlugin(*this);
return plugin;
}
void WeightOnlyQuantMatmulPlugin::configGemm()
{
mPluginProfiler->profileTactics(m_weightOnlyGemmRunner, mType, mDims, mGemmId);
}
nvinfer1::DimsExprs WeightOnlyQuantMatmulPlugin::getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
// input [m1, m2, m3, ... , k]
// weight [k, n] for int8, [k, n/2] for int4
try
{
TLLM_CHECK(nbInputs == 3);
TLLM_CHECK(outputIndex == 0);
const int nbDimsA = inputs[0].nbDims;
const int nbDimsB = inputs[1].nbDims;
TLLM_CHECK(nbDimsA >= 2);
TLLM_CHECK(nbDimsB == 2);
DimsExprs ret;
ret.nbDims = nbDimsA;
for (int ii = 0; ii < nbDimsA - 1; ++ii)
{
ret.d[ii] = inputs[0].d[ii];
}
if (mWeightTypeId == WeightTypeId::INT8)
{
// int8 weight only quant
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue());
}
else
{
// int4 weight only quant
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue() * INT8_INT4_RATIO);
}
return ret;
}
catch (const std::exception& e)
{
caughtError(e);
}
return DimsExprs{};
}
bool WeightOnlyQuantMatmulPlugin::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) noexcept
{
switch (pos)
{
case 0:
// activation
return inOut[0].type == mType && inOut[0].format == TensorFormat::kLINEAR;
case 1:
// weights
// Weights are required to be int8, but will be reinterpreted as int4 in enqueue if required
// Weights stored in checkpoint should have int8/int4 type
return inOut[1].type == nvinfer1::DataType::kINT8 && inOut[1].format == TensorFormat::kLINEAR;
case 2:
// scales channels
return inOut[2].type == mType && inOut[2].format == TensorFormat::kLINEAR;
case 3:
// out
return inOut[3].type == mType && inOut[3].format == TensorFormat::kLINEAR;
default:
// Never should be here
assert(false);
return false;
}
}
void WeightOnlyQuantMatmulPlugin::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept
{
const auto minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies<int>());
const auto maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies<int>());
const int maxK = in[0].max.d[in[0].max.nbDims - 1];
const int maxN = in[1].max.d[1] * getWeightTypeMultiplier(mWeightTypeId);
const auto K = maxK;
const auto N = maxN / getWeightTypeMultiplier(mWeightTypeId);
if (!mDims.isInitialized())
{
mDims = {minM, maxM, N, K};
}
mGemmId = {N, K, mType};
m_workspaceMaxSize = m_weightOnlyGemmRunner->getWorkspaceSize(maxM, maxN, maxK);
}
size_t WeightOnlyQuantMatmulPlugin::getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const noexcept
{
return m_workspaceMaxSize;
}
int WeightOnlyQuantMatmulPlugin::enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const nvinfer1::PluginTensorDesc* outputDesc, const void* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
// inputs
// mat1 [M1, M2,..., K]
// mat2 [K, N] for int8, [K, N/2] for int4
// scale_channels [N]
// outputs
// mat [M, N]
int m = 1;
for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii)
{
m *= inputDesc[0].dims.d[ii];
}
const int n = inputDesc[1].dims.d[1];
const int k = inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1];
const int ws_size = m_weightOnlyGemmRunner->getWorkspaceSize(m, n, k);
const auto& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId);
TLLM_CHECK_WITH_INFO(bestTactic, "No valid weight only groupwise GEMM tactic");
#if defined(ENABLE_BF16)
TLLM_CHECK_WITH_INFO(mType == nvinfer1::DataType::kHALF || mType == nvinfer1::DataType::kBF16,
"No valid weightOnlyQuantMatmul configuration");
#else
TLLM_CHECK_WITH_INFO(mType == nvinfer1::DataType::kHALF, "No valid weightOnlyQuantMatmul configuration");
#endif
tensorrt_llm::kernels::WeightOnlyQuantType weight_only_quant_type;
tensorrt_llm::kernels::WeightOnlyActivationType weight_only_act_type;
int real_n;
if (mType == nvinfer1::DataType::kHALF)
{
weight_only_act_type = tensorrt_llm::kernels::WeightOnlyActivationType::FP16;
}
else if (mType == nvinfer1::DataType::kBF16)
{
weight_only_act_type = tensorrt_llm::kernels::WeightOnlyActivationType::BF16;
}
if (mWeightTypeId == WeightTypeId::INT8)
{
weight_only_quant_type = tensorrt_llm::kernels::WeightOnlyQuantType::Int8b;
real_n = n;
}
else if (mWeightTypeId == WeightTypeId::INT4)
{
weight_only_quant_type = tensorrt_llm::kernels::WeightOnlyQuantType::Int4b;
real_n = n * INT8_INT4_RATIO;
}
if (m < SMALL_M_FAST_PATH && mCudaKernelEnabled)
{
// Use CUDA kernels for small batch size
// The CUDA kernel is designed for ColumnMajorTileInterleave weight layout used in fpAIntB cutlass
// kernel when sm >= 75 and the preprocessing of cutlass on sm70 does not interleave the weights.
tensorrt_llm::kernels::WeightOnlyParams params{reinterpret_cast<const uint8_t*>(inputs[1]), inputs[2], nullptr,
inputs[0], nullptr, outputs[0], m, real_n, k, 0, weight_only_quant_type,
tensorrt_llm::kernels::WeightOnlyType::PerChannel,
tensorrt_llm::kernels::WeightOnlyActivationFunctionType::Identity, weight_only_act_type};
tensorrt_llm::kernels::weight_only_batched_gemv_launcher(params, stream);
}
else
{
m_weightOnlyGemmRunner->gemm(inputs[0], inputs[1], inputs[2], outputs[0], m, real_n, k, *bestTactic,
reinterpret_cast<char*>(workspace), ws_size, stream);
}
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType WeightOnlyQuantMatmulPlugin::getOutputDataType(
int index, const nvinfer1::DataType* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK(index == 0);
return mType;
}
// IPluginV2 Methods
const char* WeightOnlyQuantMatmulPlugin::getPluginType() const noexcept
{
return WOQ_MATMUL_PLUGIN_NAME;
}
const char* WeightOnlyQuantMatmulPlugin::getPluginVersion() const noexcept
{
return WOQ_MATMUL_PLUGIN_VERSION;
}
int WeightOnlyQuantMatmulPlugin::getNbOutputs() const noexcept
{
return 1;
}
int WeightOnlyQuantMatmulPlugin::initialize() noexcept
{
configGemm();
return 0;
}
void WeightOnlyQuantMatmulPlugin::terminate() noexcept {}
size_t WeightOnlyQuantMatmulPlugin::getSerializationSize() const noexcept
{
return sizeof(mWeightTypeId) + // mWeightTypeId
sizeof(nvinfer1::DataType) + // mType
sizeof(mDims) + // Dimensions
mPluginProfiler->getSerializationSize(mGemmId); // selected tactics container size
}
void WeightOnlyQuantMatmulPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mType);
write(d, mWeightTypeId);
write(d, mDims);
mPluginProfiler->serialize(d, mGemmId);
assert(d == a + getSerializationSize());
}
void WeightOnlyQuantMatmulPlugin::destroy() noexcept
{
// This gets called when the network containing plugin is destroyed
delete this;
}
///////////////
WeightOnlyQuantMatmulPluginCreator::WeightOnlyQuantMatmulPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32, 1));
mPluginAttributes.emplace_back(PluginField("weight_type_id", nullptr, PluginFieldType::kINT32, 1));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
const char* WeightOnlyQuantMatmulPluginCreator::getPluginName() const noexcept
{
return WOQ_MATMUL_PLUGIN_NAME;
}
const char* WeightOnlyQuantMatmulPluginCreator::getPluginVersion() const noexcept
{
return WOQ_MATMUL_PLUGIN_VERSION;
}
const PluginFieldCollection* WeightOnlyQuantMatmulPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* WeightOnlyQuantMatmulPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc) noexcept
{
const PluginField* fields = fc->fields;
nvinfer1::DataType type;
WeightTypeId weightTypeId;
// Read configurations from each fields
for (int i = 0; i < fc->nbFields; ++i)
{
const char* attrName = fields[i].name;
if (!strcmp(attrName, "weight_type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
weightTypeId = static_cast<WeightTypeId>(*(static_cast<const int*>(fields[i].data)));
}
else if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<const nvinfer1::DataType*>(fields[i].data)));
}
}
try
{
// WeightOnlyGroupwiseQuantMatmulPluginCreator is unique and shared for an engine generation
// Create plugin profiler with shared tactics map
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ false);
auto* obj = new WeightOnlyQuantMatmulPlugin(type, weightTypeId, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (const std::exception& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* WeightOnlyQuantMatmulPluginCreator::deserializePlugin(
const char* name, const void* serialData, size_t serialLength) noexcept
{
// This object will be deleted when the network is destroyed, which will
// call WeightOnlyQuantMatmulPlugin::destroy()
try
{
// Create plugin profiler with private tactics map which is read from the serialized engine
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/* inference */ true);
auto* obj = new WeightOnlyQuantMatmulPlugin(serialData, serialLength, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (const std::exception& e)
{
caughtError(e);
}
return nullptr;
}