mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Tltin <TltinDeng01@gmail.com> Co-authored-by: zhaohb <zhaohbcloud@126.com> Co-authored-by: Bradley Heilbrun <brad@repl.it> Co-authored-by: nqbao11 <nqbao11.01@gmail.com> Co-authored-by: Nikhil Varghese <nikhil@bot-it.ai>
130 lines
4.1 KiB
C++
130 lines
4.1 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/ncclCommunicator.h"
|
|
|
|
#include "tensorrt_llm/runtime/utils/multiDeviceUtils.h"
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <mpi.h>
|
|
#include <type_traits>
|
|
|
|
#if ENABLE_MULTI_DEVICE
|
|
#include <nccl.h>
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
//! \brief For converting a C++ data type to a Nccl data type.
|
|
template <typename T>
|
|
struct NcclDataType
|
|
{
|
|
};
|
|
|
|
template <>
|
|
struct NcclDataType<half>
|
|
{
|
|
static constexpr auto value = ncclDataType_t::ncclHalf;
|
|
};
|
|
|
|
template <>
|
|
struct NcclDataType<float>
|
|
{
|
|
static constexpr auto value = ncclDataType_t::ncclFloat;
|
|
};
|
|
|
|
template <>
|
|
struct NcclDataType<std::uint8_t>
|
|
{
|
|
static constexpr auto value = ncclDataType_t::ncclUint8;
|
|
};
|
|
|
|
template <>
|
|
struct NcclDataType<std::int32_t>
|
|
{
|
|
static constexpr auto value = ncclDataType_t::ncclInt32;
|
|
};
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
void NcclCommunicator::send(T* sendbuff, size_t count, int peer, CudaStream const& stream) const
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
auto datatype = NcclDataType<std::remove_cv_t<T>>::value;
|
|
TLLM_NCCL_CHECK(ncclSend(sendbuff, count, datatype, peer, mComm, stream.get()));
|
|
#else
|
|
TLLM_THROW("Multi device support is disabled.");
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
}
|
|
|
|
template void NcclCommunicator::send(std::uint8_t*, size_t, int, CudaStream const&) const;
|
|
template void NcclCommunicator::send(std::int32_t*, size_t, int, CudaStream const&) const;
|
|
template void NcclCommunicator::send(std::uint8_t const*, size_t, int, CudaStream const&) const;
|
|
template void NcclCommunicator::send(std::int32_t const*, size_t, int, CudaStream const&) const;
|
|
template void NcclCommunicator::send(float const*, size_t, int, CudaStream const&) const;
|
|
|
|
template <typename T>
|
|
void NcclCommunicator::receive(T* sendbuff, size_t count, int peer, CudaStream const& stream) const
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
auto datatype = NcclDataType<std::remove_cv_t<T>>::value;
|
|
TLLM_NCCL_CHECK(ncclRecv(sendbuff, count, datatype, peer, mComm, stream.get()));
|
|
#else
|
|
TLLM_THROW("Multi device support is disabled.");
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
}
|
|
|
|
template void NcclCommunicator::receive(std::uint8_t*, size_t, int, CudaStream const&) const;
|
|
template void NcclCommunicator::receive(std::int32_t*, size_t, int, CudaStream const&) const;
|
|
template void NcclCommunicator::receive(float*, size_t, int, CudaStream const&) const;
|
|
|
|
std::shared_ptr<NcclCommunicator> NcclCommunicator::createPipelineComm(WorldConfig const& worldConfig)
|
|
{
|
|
#if ENABLE_MULTI_DEVICE
|
|
int const myRank = worldConfig.getRank();
|
|
int const worldSize = worldConfig.getSize();
|
|
|
|
ncclUniqueId id;
|
|
if (myRank == 0)
|
|
{
|
|
ncclGetUniqueId(&id);
|
|
for (auto peer = 1; peer < worldSize; ++peer)
|
|
{
|
|
TLLM_MPI_CHECK(MPI_Send(&id, sizeof(id), MPI_BYTE, peer, 0, MPI_COMM_WORLD));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto constexpr peer = 0;
|
|
MPI_Status status;
|
|
TLLM_MPI_CHECK(MPI_Recv(&id, sizeof(id), MPI_BYTE, peer, 0, MPI_COMM_WORLD, &status));
|
|
}
|
|
|
|
auto pipelineComm = std::make_shared<NcclCommunicator>();
|
|
TLLM_NCCL_CHECK(ncclCommInitRank(&pipelineComm->mComm, worldSize, id, myRank));
|
|
|
|
return pipelineComm;
|
|
#else
|
|
// Python runtime requires instantiation of a communicator even though it may never be used to enable
|
|
// pipeline parallel code-path. To enable this, have an empty communicator with uninitialized state.
|
|
return nullptr;
|
|
#endif // ENABLE_MULTI_DEVICE
|
|
}
|