TensorRT-LLMs/cpp/tensorrt_llm/runtime/worldConfig.cpp
Kaiyu Xie 6755a3f077
Update TensorRT-LLM (#422)
* Update TensorRT-LLM

---------

Co-authored-by: Tltin <TltinDeng01@gmail.com>
Co-authored-by: zhaohb <zhaohbcloud@126.com>
Co-authored-by: Bradley Heilbrun <brad@repl.it>
Co-authored-by: nqbao11 <nqbao11.01@gmail.com>
Co-authored-by: Nikhil Varghese <nikhil@bot-it.ai>
2023-11-18 00:05:54 +08:00

108 lines
3.4 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/worldConfig.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/stringUtils.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/runtime/utils/multiDeviceUtils.h"
#include <csignal>
#include <cstdlib>
#include <mpi.h>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
namespace
{
bool mpiInitialized = false;
void initMpi(nvinfer1::ILogger& logger, int threadMode = MPI_THREAD_FUNNELED)
{
if (mpiInitialized)
{
return;
}
int initialized = 0;
TLLM_MPI_CHECK(MPI_Initialized(&initialized));
if (!initialized)
{
logger.log(
nvinfer1::ILogger::Severity::kINFO, tc::fmtstr("Initializing MPI with thread mode %d", threadMode).c_str());
int providedMode;
TLLM_MPI_CHECK(MPI_Init_thread(nullptr, nullptr, threadMode, &providedMode));
TLLM_CHECK_WITH_INFO(providedMode >= threadMode, "MPI_Init_thread failed");
std::atexit([]() { MPI_Finalize(); });
auto previousHandler = std::signal(SIGABRT, [](int signal) { MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE); });
TLLM_CHECK_WITH_INFO(previousHandler != SIG_ERR, "Signal handler setup failed");
}
mpiInitialized = true;
}
} // namespace
bool WorldConfig::validConfig(nvinfer1::ILogger& logger, SizeType tensorParallelism, SizeType pipelineParallelism)
{
initMpi(logger);
int mpiSize;
TLLM_MPI_CHECK(MPI_Comm_size(MPI_COMM_WORLD, &mpiSize));
return mpiSize == tensorParallelism * pipelineParallelism;
}
WorldConfig WorldConfig::mpi(nvinfer1::ILogger& logger, SizeType gpusPerNode, std::optional<SizeType> tensorParallelism,
std::optional<SizeType> pipelineParallelism)
{
initMpi(logger);
int mpiSize, mpiRank;
TLLM_MPI_CHECK(MPI_Comm_size(MPI_COMM_WORLD, &mpiSize));
TLLM_MPI_CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank));
logger.log(nvinfer1::ILogger::Severity::kINFO, tc::fmtstr("MPI size: %d, rank: %d", mpiSize, mpiRank).c_str());
auto pp = pipelineParallelism.value_or(1);
auto tp = tensorParallelism.value_or(mpiSize / pp);
TLLM_CHECK(mpiSize == tp * pp);
return WorldConfig{tp, pp, mpiRank, gpusPerNode};
}
WorldConfig WorldConfig::mpi(
SizeType gpusPerNode, std::optional<SizeType> tensorParallelism, std::optional<SizeType> pipelineParallelism)
{
TllmLogger logger{};
return mpi(logger, gpusPerNode, tensorParallelism, pipelineParallelism);
}
std::vector<SizeType> WorldConfig::getPipelineParallelGroup() const
{
auto const pp = getPipelineParallelism();
auto const tp = getTensorParallelism();
auto const worldSize = getSize();
std::vector<SizeType> group;
group.reserve(pp);
for (SizeType idx = getTensorParallelRank(); idx < worldSize; idx += tp)
{
group.push_back(idx);
}
return group;
}