TensorRT-LLMs/tensorrt_llm/layers/lora.py
Kaiyu Xie 6755a3f077
Update TensorRT-LLM (#422)
* Update TensorRT-LLM

---------

Co-authored-by: Tltin <TltinDeng01@gmail.com>
Co-authored-by: zhaohb <zhaohbcloud@126.com>
Co-authored-by: Bradley Heilbrun <brad@repl.it>
Co-authored-by: nqbao11 <nqbao11.01@gmail.com>
Co-authored-by: Nikhil Varghese <nikhil@bot-it.ai>
2023-11-18 00:05:54 +08:00

67 lines
2.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
from .._common import default_net
from ..functional import Tensor, lora_plugin
from ..module import Module
class Lora(Module):
def __init__(self,
in_hidden_size: int = 0,
out_hidden_size: int = 0,
max_low_rank: int = 0) -> None:
super().__init__()
self.in_hidden_size = in_hidden_size
self.out_hidden_size = out_hidden_size
self.max_low_rank = max_low_rank
def forward(self,
x,
host_request_types=None,
host_context_lengths=None,
max_context_length: int = 0,
lora_ranks=None,
lora_weights_pointers=None):
if default_net().plugin_config.lora_plugin:
x = lora_plugin(x,
in_hidden_size=self.in_hidden_size,
out_hidden_size=self.out_hidden_size,
host_request_types=host_request_types,
transb=True,
host_context_lengths=host_context_lengths,
max_context_length=max_context_length,
max_low_rank=self.max_low_rank,
lora_ranks=lora_ranks,
lora_weights_pointers=lora_weights_pointers)
else:
assert False, "Not support lora without plugin"
return x
class LoraParams(object):
def __init__(self,
lora_ranks: Tensor = None,
lora_weights_pointers_list: List[Tensor] = None):
self.lora_ranks = lora_ranks
self.lora_weights_pointers_list = lora_weights_pointers_list