mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Tltin <TltinDeng01@gmail.com> Co-authored-by: zhaohb <zhaohbcloud@126.com> Co-authored-by: Bradley Heilbrun <brad@repl.it> Co-authored-by: nqbao11 <nqbao11.01@gmail.com> Co-authored-by: Nikhil Varghese <nikhil@bot-it.ai>
470 lines
17 KiB
Python
470 lines
17 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
|
|
import tensorrt as trt
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size, str_dtype_to_trt
|
|
from ...functional import (PositionEmbeddingType, Tensor, concat,
|
|
gather_last_token_logits, shape)
|
|
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
|
|
ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm,
|
|
RmsNorm)
|
|
from ...module import Module, ModuleList
|
|
from ..generation_mixin import GenerationMixin
|
|
|
|
|
|
class ChatGLMDecoderLayer(Module):
|
|
|
|
def __init__(self, layer_id, args):
|
|
|
|
super().__init__()
|
|
|
|
self.model_name = args.model_name
|
|
self.use_cache = args.use_cache
|
|
rotary_embedding_scaling = None
|
|
|
|
if self.model_name in ["chatglm_6b"]:
|
|
self.alpha = (2 * args.num_layers)**0.5
|
|
self.norm = LayerNorm
|
|
attention_mask_type = AttentionMaskType.bidirectional
|
|
position_embedding_type = PositionEmbeddingType.chatglm
|
|
elif args.model_name in [
|
|
"chatglm2_6b", "chatglm2_6b_32k", "chatglm3_6b",
|
|
"chatglm3_6b_base", "chatglm3_6b_32k"
|
|
]:
|
|
self.apply_residual_connection_post_layernorm = args.apply_residual_connection_post_layernorm
|
|
self.norm = RmsNorm if args.rmsnorm else LayerNorm
|
|
attention_mask_type = AttentionMaskType.causal
|
|
position_embedding_type = PositionEmbeddingType.rope_gptj
|
|
if args.model_name in ["chatglm2_6b_32k", "chatglm3_6b_32k"]:
|
|
rotary_embedding_scaling = {
|
|
"type": "linear",
|
|
"factor": args.rotary_embedding_scaling
|
|
}
|
|
elif args.model_name in ["glm_10b"]:
|
|
self.apply_residual_connection_post_layernorm = args.apply_residual_connection_post_layernorm
|
|
self.norm = LayerNorm
|
|
attention_mask_type = AttentionMaskType.bidirectionalglm
|
|
position_embedding_type = PositionEmbeddingType.learned_absolute
|
|
|
|
self.pre_norm = self.norm(
|
|
normalized_shape=args.hidden_size,
|
|
eps=args.norm_epsilon,
|
|
elementwise_affine=True,
|
|
dtype=args.dtype,
|
|
)
|
|
|
|
self.attention = Attention(
|
|
hidden_size=args.hidden_size,
|
|
num_attention_heads=args.num_heads,
|
|
num_kv_heads=args.num_kv_heads,
|
|
max_position_embeddings=args.max_seq_length,
|
|
num_layers=args.num_layers,
|
|
apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
|
|
attention_mask_type=attention_mask_type,
|
|
bias=args.qkv_bias,
|
|
dtype=args.dtype,
|
|
position_embedding_type=position_embedding_type,
|
|
rotary_embedding_base=10000.0,
|
|
rotary_embedding_scaling=rotary_embedding_scaling,
|
|
use_int8_kv_cache=args.quant_mode.has_int8_kv_cache(),
|
|
rotary_embedding_percentage=0.5,
|
|
tp_group=args.mapping.tp_group,
|
|
tp_size=args.mapping.tp_size,
|
|
tp_rank=args.mapping.rank,
|
|
quant_mode=args.quant_mode,
|
|
q_scaling=1.0,
|
|
cross_attention=False,
|
|
relative_attention=False,
|
|
max_distance=0,
|
|
num_buckets=0,
|
|
instance_id=layer_id * 2,
|
|
dense_bias=args.linear_bias,
|
|
)
|
|
|
|
self.mlp = MLP(
|
|
hidden_size=args.hidden_size,
|
|
ffn_hidden_size=args.ffn_hidden_size,
|
|
hidden_act=args.hidden_act,
|
|
bias=args.linear_bias,
|
|
dtype=args.dtype,
|
|
tp_group=args.mapping.tp_group,
|
|
tp_size=args.mapping.tp_size,
|
|
quant_mode=args.quant_mode,
|
|
instance_id=layer_id * 2 + 1,
|
|
)
|
|
|
|
self.post_norm = self.norm(
|
|
normalized_shape=args.hidden_size,
|
|
eps=args.norm_epsilon,
|
|
elementwise_affine=True,
|
|
dtype=args.dtype,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Tensor,
|
|
position_ids: Tensor = None, # only used in ChatGLM-6B
|
|
kv_cache_params: KeyValueCacheParams = None,
|
|
attention_params: AttentionParams = None,
|
|
):
|
|
|
|
norm_output = self.pre_norm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
hidden_states=norm_output,
|
|
attention_mask=None,
|
|
use_cache=self.use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
encoder_output=None,
|
|
workspace=None,
|
|
position_embedding=position_ids,
|
|
)
|
|
|
|
if self.use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
if self.model_name in ["chatglm_6b"]:
|
|
residual = norm_output
|
|
|
|
norm_input = residual * self.alpha + attention_output
|
|
|
|
norm_output = self.post_norm(norm_input)
|
|
|
|
mlp_output = self.mlp(norm_output)
|
|
|
|
residual = norm_output
|
|
|
|
output = residual * self.alpha + mlp_output
|
|
|
|
elif self.model_name in [
|
|
"chatglm2_6b", "chatglm2_6b_32k", "chatglm3_6b",
|
|
"chatglm3_6b_base", "chatglm3_6b_32k", "glm_10b"
|
|
]:
|
|
residual = norm_output if self.apply_residual_connection_post_layernorm else hidden_states
|
|
|
|
norm_input = residual + attention_output
|
|
|
|
norm_output = self.post_norm(norm_input)
|
|
|
|
mlp_output = self.mlp(norm_output)
|
|
|
|
residual = norm_output if self.apply_residual_connection_post_layernorm else norm_input
|
|
|
|
output = residual + mlp_output
|
|
|
|
return (output, presents) if self.use_cache else output
|
|
|
|
|
|
class ChatGLMModel(Module):
|
|
|
|
def __init__(self, args):
|
|
|
|
super().__init__()
|
|
|
|
self.model_name = args.model_name
|
|
|
|
if args.model_name in ["chatglm_6b", "glm_10b"]:
|
|
self.norm = LayerNorm
|
|
elif args.model_name in [
|
|
"chatglm2_6b", "chatglm2_6b_32k", "chatglm3_6b",
|
|
"chatglm3_6b_base", "chatglm3_6b_32k"
|
|
]:
|
|
self.norm = RmsNorm
|
|
self.use_cache = args.use_cache
|
|
|
|
self.embedding = Embedding(
|
|
num_embeddings=args.vocab_size,
|
|
embedding_dim=args.hidden_size,
|
|
dtype=args.dtype,
|
|
tp_size=1, #args.mapping.tp_size,
|
|
tp_group=None, #args.mapping.tp_group,
|
|
sharding_dim=0,
|
|
tp_rank=0, #args.mapping.rank,
|
|
instance_id=args.num_layers * 2,
|
|
)
|
|
|
|
if args.model_name in ["glm_10b"]:
|
|
self.position_embeddings = Embedding(
|
|
args.max_seq_length + 1,
|
|
args.hidden_size,
|
|
dtype=args.dtype,
|
|
tp_size=1, #args.mapping.tp_size,
|
|
tp_group=None, #args.mapping.tp_group,
|
|
sharding_dim=0,
|
|
tp_rank=0, #args.mapping.rank,
|
|
instance_id=args.num_layers * 2,
|
|
)
|
|
self.block_embeddings = Embedding(
|
|
args.max_seq_length + 1,
|
|
args.hidden_size,
|
|
dtype=args.dtype,
|
|
tp_size=1, #args.mapping.tp_size,
|
|
tp_group=None, #args.mapping.tp_group,
|
|
sharding_dim=0,
|
|
tp_rank=0, #args.mapping.rank,
|
|
instance_id=args.num_layers * 2,
|
|
)
|
|
|
|
self.layers = ModuleList(
|
|
ChatGLMDecoderLayer(i, args) for i in range(args.num_layers))
|
|
|
|
self.final_norm = self.norm(
|
|
normalized_shape=args.hidden_size,
|
|
eps=args.norm_epsilon,
|
|
elementwise_affine=True,
|
|
dtype=args.dtype,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Tensor = None,
|
|
position_ids: Tensor = None, # only used in ChatGLM-6B
|
|
kv_cache_params: KeyValueCacheParams = None,
|
|
attention_params: AttentionParams = None,
|
|
):
|
|
|
|
hidden_states = self.embedding(input_ids)
|
|
|
|
if self.model_name in ["glm_10b"]:
|
|
position_ids_list = position_ids.split(1, dim=1)
|
|
position_embedding = self.position_embeddings(position_ids_list[0])
|
|
block_embedding = self.block_embeddings(position_ids_list[1])
|
|
position_embedding = position_embedding + block_embedding
|
|
|
|
position_embedding = position_embedding.view(
|
|
concat([
|
|
shape(input_ids, 0),
|
|
shape(input_ids, 1),
|
|
4096,
|
|
]))
|
|
|
|
hidden_states = hidden_states + position_embedding
|
|
|
|
kv_cache_params.fill_none_tensor_list(len(self.layers))
|
|
|
|
if self.use_cache:
|
|
presents = []
|
|
|
|
for layer, past, pointer, max_kv_cache_length in zip(
|
|
self.layers, kv_cache_params.past_key_value,
|
|
kv_cache_params.kv_cache_block_pointers,
|
|
kv_cache_params.host_max_kv_cache_lengths):
|
|
layer_output = layer(
|
|
hidden_states,
|
|
position_ids,
|
|
kv_cache_params=KeyValueCacheParams(
|
|
past_key_value=[past],
|
|
kv_cache_block_pointers=[pointer],
|
|
host_past_key_value_lengths=kv_cache_params.
|
|
host_past_key_value_lengths,
|
|
host_max_kv_cache_lengths=max_kv_cache_length,
|
|
cache_indirection=kv_cache_params.cache_indirection,
|
|
),
|
|
attention_params=attention_params,
|
|
)
|
|
|
|
if self.use_cache:
|
|
hidden_states = layer_output[0]
|
|
presents.append(layer_output[1])
|
|
|
|
hidden_states = self.final_norm(hidden_states)
|
|
|
|
return (hidden_states,
|
|
tuple(presents)) if self.use_cache else hidden_states
|
|
|
|
|
|
class ChatGLMHeadModel(ChatGLMModel, GenerationMixin):
|
|
|
|
def __init__(self, **args):
|
|
|
|
if "args" not in args.keys():
|
|
new_args = argparse.Namespace()
|
|
for key, value in args.items():
|
|
new_args.__setattr__(key, value)
|
|
assert "model_name" in args.keys(), "model_name not set"
|
|
# Other default values
|
|
new_args.norm_epsilon = 1.0e-5
|
|
new_args.tokens_per_block = 64
|
|
new_args.use_cache = True
|
|
if new_args.model_name in ["chatglm_6b"]:
|
|
new_args.ffn_hidden_size = 16384
|
|
new_args.linear_bias = True
|
|
new_args.max_seq_length = min(2048,
|
|
new_args.max_position_embeddings)
|
|
new_args.num_kv_heads = 32
|
|
new_args.qkv_bias = True
|
|
elif new_args.model_name in ["glm_10b"]:
|
|
new_args.ffn_hidden_size = 16384
|
|
new_args.linear_bias = True
|
|
new_args.max_seq_length = min(1024,
|
|
new_args.max_position_embeddings)
|
|
new_args.num_kv_heads = 32
|
|
new_args.qkv_bias = True
|
|
elif new_args.model_name in [
|
|
"chatglm2_6b", "chatglm2_6b_32k", "chatglm3_6b",
|
|
"chatglm3_6b_base", "chatglm3_6b_32k"
|
|
]:
|
|
new_args.apply_residual_connection_post_layernorm = False
|
|
new_args.ffn_hidden_size = 13696
|
|
new_args.linear_bias = False
|
|
new_args.num_kv_heads = 2
|
|
new_args.qkv_bias = True
|
|
new_args.rmsnorm = True
|
|
args = new_args
|
|
else:
|
|
args = args["args"]
|
|
|
|
self.init(args)
|
|
|
|
def init(self, args):
|
|
|
|
super().__init__(args)
|
|
|
|
if isinstance(args.dtype, str):
|
|
self.kv_dtype = str_dtype_to_trt(args.dtype)
|
|
else:
|
|
assert isinstance(args.dtype, trt.DataType)
|
|
self.kv_dtype = args.dtype
|
|
self.dtype = self.kv_dtype
|
|
|
|
if isinstance(args.logits_dtype, str):
|
|
self.logits_dtype = str_dtype_to_trt(args.logits_dtype)
|
|
else:
|
|
assert isinstance(args.logits_dtype, trt.DataType)
|
|
self.logits_dtype = args.logits_dtype
|
|
|
|
if args.quant_mode.has_int8_kv_cache():
|
|
self.kv_dtype = str_dtype_to_trt('int8')
|
|
elif args.quant_mode.has_fp8_kv_cache():
|
|
self.kv_dtype = str_dtype_to_trt('fp8')
|
|
|
|
self.hidden_size = args.hidden_size
|
|
self.mapping = args.mapping
|
|
self.max_num_tokens = args.max_output_len + args.max_input_len
|
|
self.model_name = args.model_name
|
|
self.num_heads = args.num_heads
|
|
self.num_kv_heads = args.num_kv_heads
|
|
self.num_layers = args.num_layers
|
|
self.tokens_per_block = args.tokens_per_block
|
|
self.use_cache = args.use_cache
|
|
|
|
self.lm_head = ColumnLinear(
|
|
in_features=self.hidden_size,
|
|
out_features=pad_vocab_size(args.vocab_size, self.mapping.tp_size),
|
|
bias=False,
|
|
dtype=self.dtype,
|
|
tp_group=self.mapping.tp_group,
|
|
tp_size=self.mapping.tp_size,
|
|
gather_output=True,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Tensor = None,
|
|
position_ids: Tensor = None, # only used in ChatGLM-6B
|
|
last_token_ids: Tensor = None,
|
|
kv_cache_params: KeyValueCacheParams = None,
|
|
attention_params: AttentionParams = None,
|
|
):
|
|
|
|
hidden_states = super().forward(
|
|
input_ids,
|
|
position_ids,
|
|
kv_cache_params,
|
|
attention_params,
|
|
)
|
|
|
|
if self.use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
hidden_states = gather_last_token_logits(
|
|
hidden_states, last_token_ids,
|
|
default_net().plugin_config.remove_input_padding)
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
lm_logits.mark_output('logits', self.logits_dtype)
|
|
|
|
if self.use_cache and default_net(
|
|
).plugin_config.paged_kv_cache == False:
|
|
for i, present in enumerate(presents):
|
|
present.mark_output(f'present_key_value_{i}', self.kv_dtype)
|
|
return (lm_logits, presents)
|
|
|
|
return lm_logits
|
|
|
|
def prepare_inputs(
|
|
self,
|
|
max_batch_size: int = 0,
|
|
max_input_len: int = 0,
|
|
max_new_tokens: int = 0,
|
|
use_cache: bool = True,
|
|
max_beam_width: int = 1,
|
|
):
|
|
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
|
|
ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
|
|
model_inputs = self.prepare_basic_inputs(
|
|
max_batch_size=max_batch_size,
|
|
max_beam_width=max_beam_width,
|
|
max_input_len=max_input_len,
|
|
max_new_tokens=max_new_tokens,
|
|
num_kv_heads=self.num_kv_heads // self.mapping.tp_size,
|
|
head_size=self.hidden_size // self.num_heads,
|
|
num_layers=self.num_layers,
|
|
kv_dtype=self.kv_dtype,
|
|
remove_input_padding=default_net(
|
|
).plugin_config.remove_input_padding,
|
|
use_gpt_attention_plugin=default_net().plugin_config.
|
|
gpt_attention_plugin,
|
|
use_gemm_plugin=default_net().plugin_config.gemm_plugin,
|
|
use_custom_all_reduce=False,
|
|
paged_kv_cache=default_net().plugin_config.paged_kv_cache,
|
|
tokens_per_block=self.tokens_per_block,
|
|
gather_all_token_logits=False,
|
|
dtype=self.kv_dtype,
|
|
num_heads=self.num_heads,
|
|
mapping=self.mapping,
|
|
max_num_tokens=self.max_num_tokens,
|
|
prompt_embedding_table_size=0,
|
|
position_encoding_2d=(self.model_name in ["chatglm_6b", "glm_10b"]),
|
|
)
|
|
|
|
return (model_inputs['input_ids'], model_inputs['position_ids'],
|
|
model_inputs['last_token_ids'],
|
|
KeyValueCacheParams(
|
|
past_key_value=model_inputs['past_key_value'],
|
|
host_past_key_value_lengths=model_inputs[
|
|
'host_past_key_value_lengths'],
|
|
host_max_kv_cache_lengths=model_inputs[
|
|
'host_max_kv_cache_lengths'],
|
|
kv_cache_block_pointers=model_inputs[
|
|
'kv_cache_block_pointers_list'],
|
|
cache_indirection=model_inputs['cache_indirection'],
|
|
),
|
|
AttentionParams(
|
|
sequence_length=model_inputs['sequence_length'],
|
|
context_lengths=model_inputs['context_lengths'],
|
|
host_context_lengths=model_inputs['host_context_lengths'],
|
|
max_context_length=max_input_len,
|
|
host_request_types=model_inputs['host_request_types'],
|
|
))
|