TensorRT-LLMs/tests/integration/defs/examples/test_exaone.py
Ivy Zhang d101a6cebc
[https://nvbugs/5410279][test] resubmit timeout refactor (#6337)
Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
2025-08-05 16:39:25 +08:00

162 lines
6.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module test_exaone test exaone examples."""
import pytest
from defs.common import (convert_weights, generate_summary_cmd, venv_check_call,
venv_mpi_check_call)
from defs.conftest import get_sm_version, skip_post_blackwell
from defs.trt_test_alternative import check_call
# skip trt flow cases on post-Blackwell-Ultra
if get_sm_version() >= 103:
pytest.skip(
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
allow_module_level=True)
@skip_post_blackwell
@pytest.mark.parametrize("num_beams", [1, 2, 4],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("data_type", ['bfloat16', 'float16'])
@pytest.mark.parametrize("llm_exaone_model_root",
['exaone_3.0_7.8b_instruct', 'exaone_deep_2.4b'],
indirect=True)
@pytest.mark.parametrize("use_weight_only",
[pytest.param(True, marks=skip_post_blackwell), False],
ids=["enable_weight_only", "disable_weight_only"])
def test_llm_exaone_1gpu(data_type, exaone_example_root, llm_exaone_model_root,
llama_example_root, llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir, num_beams,
use_weight_only, timeout_manager):
print("Build engines...")
model_name = "exaone"
# Convert weights with timeout management
with timeout_manager.timed_operation("convert"):
model_dir = convert_weights(
llm_venv=llm_venv,
# NOTE
# EXAONE is based on llama so reuse llama's checkpoint converter
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_exaone_model_root,
data_type=data_type,
use_weight_only=use_weight_only,
timeout=timeout_manager.remaining_timeout)
# Build engines with timeout management
with timeout_manager.timed_operation("build"):
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}",
f"--max_beam_width={num_beams}",
]
check_call(" ".join(build_cmd),
shell=True,
env=llm_venv._new_env,
timeout=timeout_manager.remaining_timeout)
rouge1_threshold = {
1: 22,
2: 22,
4: 23,
}[num_beams]
# Run summary with timeout management
print("Run summarize...")
summary_cmd = generate_summary_cmd(
exaone_example_root,
hf_model_dir=llm_exaone_model_root,
engine_dir=engine_dir,
data_type=data_type,
tensorrt_llm_rouge1_threshold=rouge1_threshold,
use_py_session=False,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root,
num_beams=num_beams,
)
with timeout_manager.timed_operation("summary"):
venv_check_call(llm_venv,
summary_cmd,
timeout=timeout_manager.remaining_timeout)
@pytest.mark.skip_less_device(2)
@pytest.mark.parametrize("num_beams", [1],
ids=lambda num_beams: f'nb:{num_beams}')
@pytest.mark.parametrize("data_type", ['float16'])
@pytest.mark.parametrize("llm_exaone_model_root",
['exaone_3.0_7.8b_instruct', 'exaone_deep_2.4b'],
indirect=True)
def test_llm_exaone_2gpu(data_type, exaone_example_root, llm_exaone_model_root,
llama_example_root, llm_datasets_root, llm_rouge_root,
llm_venv, cmodel_dir, engine_dir, num_beams,
timeout_manager):
tp_size = 2
print("Build engines...")
model_name = "exaone"
# Convert weights with timeout management
with timeout_manager.timed_operation("convert"):
model_dir = convert_weights(
llm_venv=llm_venv,
# NOTE
# EXAONE is based on llama so reuse llama's checkpoint converter
example_root=llama_example_root,
cmodel_dir=cmodel_dir,
model=model_name,
model_path=llm_exaone_model_root,
data_type=data_type,
tp_size=tp_size,
pp_size=1,
timeout=timeout_manager.remaining_timeout)
# Build engines with timeout management
with timeout_manager.timed_operation("build"):
build_cmd = [
"trtllm-build", f"--checkpoint_dir={model_dir}",
f"--output_dir={engine_dir}", f"--max_beam_width={num_beams}"
]
check_call(" ".join(build_cmd),
shell=True,
env=llm_venv._new_env,
timeout=timeout_manager.remaining_timeout)
# Run summary with timeout management
print("Run summarize...")
summary_cmd = generate_summary_cmd(
exaone_example_root,
hf_model_dir=llm_exaone_model_root,
engine_dir=engine_dir,
data_type=data_type,
tensorrt_llm_rouge1_threshold=22,
use_py_session=False,
dataset_dir=llm_datasets_root,
rouge_dir=llm_rouge_root,
num_beams=num_beams,
)
with timeout_manager.timed_operation("summary"):
venv_mpi_check_call(
llm_venv, ["mpirun", "-n", f"{tp_size}", "--allow-run-as-root"],
summary_cmd,
timeout=timeout_manager.remaining_timeout)