TensorRT-LLMs/tests/integration/defs/examples/test_nemotron.py
xinhe-nv 263c6c0ad0
test: skip post blackwell (#6357)
Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>
2025-08-01 13:10:14 -04:00

181 lines
6.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from defs.common import venv_check_call, venv_mpi_check_call
from defs.conftest import get_sm_version, skip_fp8_pre_ada
from defs.trt_test_alternative import check_call
# skip trt flow cases on post-Blackwell-Ultra
if get_sm_version() >= 103:
pytest.skip(
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
allow_module_level=True)
@pytest.mark.skip_less_device_memory(50000)
@pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"])
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
def test_llm_nemotron_3_8b_1gpu(nemotron_example_root,
llm_nemotron_3_8b_model_root, llm_datasets_root,
llm_rouge_root, llm_venv, cmodel_dir,
engine_dir, dtype, qformat):
print("Converting checkpoint...")
model_name = 'nemotron-3-8b'
ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/1-gpu"
quantize_cmd = [
f"{nemotron_example_root}/../quantization/quantize.py",
f"--nemo_ckpt_path={llm_nemotron_3_8b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
"--batch_size=64",
f"--dtype={dtype}",
f"--qformat={qformat}",
f"--output_dir={ckpt_dir}",
]
venv_check_call(llm_venv, quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
"--max_batch_size=8",
"--max_input_len=924",
"--max_seq_len=1024",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run engines...")
summary_cmd = [
f"{nemotron_example_root}/../summarize.py", "--test_trt_llm",
f"--engine_dir={engine_dir}",
f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens",
"--batch_size=8", "--max_ite=40", "--check_accuracy",
"--tensorrt_llm_rouge1_threshold=18",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device_memory(50000)
@pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"])
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
def test_llm_nemotron_4_15b_1gpu(nemotron_example_root,
llm_nemotron_4_15b_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir, dtype, qformat):
skip_fp8_pre_ada(use_fp8=qformat == "fp8")
print("Converting checkpoint...")
model_name = 'nemotron-4-15b'
ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/1-gpu"
quantize_cmd = [
f"{nemotron_example_root}/../quantization/quantize.py",
f"--nemo_ckpt_path={llm_nemotron_4_15b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
"--batch_size=64",
f"--dtype={dtype}",
f"--qformat={qformat}",
f"--output_dir={ckpt_dir}",
]
venv_check_call(llm_venv, quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
"--max_batch_size=8",
"--max_input_len=924",
"--max_seq_len=1024",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run engines...")
summary_cmd = [
f"{nemotron_example_root}/../summarize.py", "--test_trt_llm",
f"--engine_dir={engine_dir}",
f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens",
"--batch_size=8", "--max_ite=40", "--check_accuracy",
"--tensorrt_llm_rouge1_threshold=18",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
venv_check_call(llm_venv, summary_cmd)
@pytest.mark.skip_less_device(2)
@pytest.mark.skip_less_device_memory(50000)
@pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"])
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
def test_llm_nemotron_4_15b_2gpus(nemotron_example_root,
llm_nemotron_4_15b_model_root,
llm_datasets_root, llm_rouge_root, llm_venv,
cmodel_dir, engine_dir, dtype, qformat):
skip_fp8_pre_ada(use_fp8=qformat == 'fp8')
print("Converting checkpoint...")
tp_size, pp_size = 2, 1
world_size = tp_size * pp_size
model_name = 'nemotron-4-15b'
ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/tp{tp_size}pp{pp_size}"
quantize_cmd = [
f"{nemotron_example_root}/../quantization/quantize.py",
f"--nemo_ckpt_path={llm_nemotron_4_15b_model_root}",
f"--calib_dataset={llm_datasets_root}/cnn_dailymail",
"--batch_size=64",
f"--dtype={dtype}",
f"--qformat={qformat}",
f"--calib_tp_size={tp_size}",
f"--tp_size={tp_size}",
f"--output_dir={ckpt_dir}",
]
venv_mpi_check_call(
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
quantize_cmd)
print("Building engines...")
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={ckpt_dir}",
f"--output_dir={engine_dir}",
"--max_batch_size=8",
"--max_input_len=924",
"--max_seq_len=1024",
f"--gpt_attention_plugin={dtype}",
f"--gemm_plugin={dtype}",
f"--workers={world_size}",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
print("Run engines...")
summary_cmd = [
f"{nemotron_example_root}/../summarize.py", "--test_trt_llm",
f"--engine_dir={engine_dir}",
f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens",
"--batch_size=8", "--max_ite=40", "--check_accuracy",
"--tensorrt_llm_rouge1_threshold=18",
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
]
venv_mpi_check_call(
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
summary_cmd)