TensorRT-LLMs/tensorrt_llm/commands/serve.py
Lizhi Zhou 6a4bebcd01
[None][chore] remove redundant retries while binding to arbitrary port (#10452)
Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>
2026-01-06 10:39:15 -05:00

969 lines
39 KiB
Python

import asyncio
import gc
import json
import os
import signal # Added import
import socket
import subprocess # nosec B404
import sys
from pathlib import Path
from typing import Any, Dict, Literal, Mapping, Optional, Sequence
import click
import torch
import yaml
from strenum import StrEnum
from torch.cuda import device_count
from tensorrt_llm import LLM as PyTorchLLM
from tensorrt_llm import MultimodalEncoder
from tensorrt_llm._tensorrt_engine import LLM
from tensorrt_llm._utils import mpi_rank
from tensorrt_llm.executor.utils import LlmLauncherEnvs
from tensorrt_llm.inputs.multimodal import MultimodalServerConfig
from tensorrt_llm.llmapi import (BuildConfig, CapacitySchedulerPolicy,
DynamicBatchConfig, KvCacheConfig,
SchedulerConfig)
from tensorrt_llm.llmapi.disagg_utils import (DisaggClusterConfig,
MetadataServerConfig, ServerRole,
extract_disagg_cluster_config,
parse_disagg_config_file,
parse_metadata_server_config_file)
from tensorrt_llm.llmapi.llm_utils import update_llm_args_with_extra_dict
from tensorrt_llm.llmapi.mpi_session import find_free_ipc_addr
from tensorrt_llm.llmapi.reasoning_parser import ReasoningParserFactory
from tensorrt_llm.logger import logger, severity_map
from tensorrt_llm.mapping import CpType
from tensorrt_llm.serve import OpenAIDisaggServer, OpenAIServer
from tensorrt_llm.serve.tool_parser import ToolParserFactory
from tensorrt_llm.tools.importlib_utils import import_custom_module_from_dir
# Global variable to store the Popen object of the child process
_child_p_global: Optional[subprocess.Popen] = None
def help_info_with_stability_tag(
help_str: str, tag: Literal["stable", "beta", "prototype",
"deprecated"]) -> str:
"""Append stability info to help string."""
return f":tag:`{tag}` {help_str}"
def _signal_handler_cleanup_child(signum, frame):
"""Signal handler to clean up the child process."""
global _child_p_global
if _child_p_global and _child_p_global.poll() is None:
# Using print for safety in signal handlers
logger.info(
f"Parent process (PID {os.getpid()}) received signal {signal.Signals(signum).name}. Terminating child process (PID {_child_p_global.pid})."
)
_child_p_global.terminate()
try:
_child_p_global.wait(
timeout=10) # Allow 10 seconds for graceful termination
except subprocess.TimeoutExpired:
logger.info(
f"Child process (PID {_child_p_global.pid}) did not terminate gracefully after signal. Killing."
)
_child_p_global.kill()
try:
_child_p_global.wait(timeout=10) # Allow 10 seconds for kill
except subprocess.TimeoutExpired:
logger.info(
f"Child process (PID {_child_p_global.pid}) failed to die even after kill command from signal handler."
)
if _child_p_global.poll() is not None:
logger.info(
f"Child process (PID {_child_p_global.pid}) confirmed terminated due to signal {signal.Signals(signum).name}."
)
else:
logger.info(
f"Child process (PID {_child_p_global.pid}) is still running after cleanup attempt for signal {signal.Signals(signum).name}."
)
# Standard exit code for signal termination
sys.exit(128 + signum)
def get_llm_args(
model: str,
tokenizer: Optional[str] = None,
custom_tokenizer: Optional[str] = None,
backend: str = "pytorch",
max_beam_width: int = BuildConfig.model_fields["max_beam_width"].
default,
max_batch_size: int = BuildConfig.model_fields["max_batch_size"].
default,
max_num_tokens: int = BuildConfig.model_fields["max_num_tokens"].
default,
max_seq_len: int = BuildConfig.model_fields["max_seq_len"].default,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
context_parallel_size: int = 1,
cp_config: Optional[dict] = None,
moe_expert_parallel_size: Optional[int] = None,
gpus_per_node: Optional[int] = None,
free_gpu_memory_fraction: float = 0.9,
num_postprocess_workers: int = 0,
trust_remote_code: bool = False,
revision: Optional[str] = None,
reasoning_parser: Optional[str] = None,
fail_fast_on_attention_window_too_large: bool = False,
otlp_traces_endpoint: Optional[str] = None,
enable_chunked_prefill: bool = False,
**llm_args_extra_dict: Any):
if gpus_per_node is None:
gpus_per_node = device_count()
if gpus_per_node == 0:
raise ValueError("No GPU devices found on the node")
build_config = BuildConfig(max_batch_size=max_batch_size,
max_num_tokens=max_num_tokens,
max_beam_width=max_beam_width,
max_seq_len=max_seq_len)
kv_cache_config = KvCacheConfig(
free_gpu_memory_fraction=free_gpu_memory_fraction, )
dynamic_batch_config = DynamicBatchConfig(
enable_batch_size_tuning=True,
enable_max_num_tokens_tuning=False,
dynamic_batch_moving_average_window=128)
scheduler_config = SchedulerConfig(
capacity_scheduler_policy=CapacitySchedulerPolicy.GUARANTEED_NO_EVICT,
dynamic_batch_config=dynamic_batch_config,
)
if cp_config is not None and "cp_type" in cp_config:
cp_config = cp_config.copy()
try:
cp_config["cp_type"] = CpType[cp_config["cp_type"].upper()]
except KeyError:
raise ValueError(f"Invalid cp_type: {cp_config['cp_type']}. " \
f"Must be one of: {', '.join([t.name for t in CpType])}")
llm_args = {
"model": model,
"scheduler_config": scheduler_config,
"tokenizer": tokenizer,
"custom_tokenizer": custom_tokenizer,
"tensor_parallel_size": tensor_parallel_size,
"pipeline_parallel_size": pipeline_parallel_size,
"context_parallel_size": context_parallel_size,
"cp_config": cp_config if cp_config is not None else {},
"moe_expert_parallel_size": moe_expert_parallel_size,
"gpus_per_node": gpus_per_node,
"trust_remote_code": trust_remote_code,
"revision": revision,
"build_config": build_config,
"max_batch_size": max_batch_size,
"max_num_tokens": max_num_tokens,
"max_beam_width": max_beam_width,
"max_seq_len": max_seq_len,
"kv_cache_config": kv_cache_config,
"backend": backend,
"num_postprocess_workers": num_postprocess_workers,
"postprocess_tokenizer_dir": tokenizer or model,
"reasoning_parser": reasoning_parser,
"fail_fast_on_attention_window_too_large":
fail_fast_on_attention_window_too_large,
"otlp_traces_endpoint": otlp_traces_endpoint,
"enable_chunked_prefill": enable_chunked_prefill,
}
return llm_args, llm_args_extra_dict
def launch_server(
host: str,
port: int,
llm_args: dict,
tool_parser: Optional[str] = None,
chat_template: Optional[str] = None,
metadata_server_cfg: Optional[MetadataServerConfig] = None,
server_role: Optional[ServerRole] = None,
disagg_cluster_config: Optional[DisaggClusterConfig] = None,
multimodal_server_config: Optional[MultimodalServerConfig] = None):
backend = llm_args["backend"]
model = llm_args["model"]
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
# If disagg cluster config is provided and port is not specified, try to find a free port, otherwise try to bind to the specified port
assert port > 0 or disagg_cluster_config is not None, "Port must be specified if disagg cluster config is not provided"
try:
s.bind((host, port))
if port == 0:
port = s.getsockname()[1]
except OSError as e:
raise RuntimeError(f"Failed to bind socket to {host}:{port}: {e}")
if backend == 'pytorch':
llm_args.pop("build_config", None)
llm = PyTorchLLM(**llm_args)
elif backend == '_autodeploy':
from tensorrt_llm._torch.auto_deploy import LLM as AutoDeployLLM
# AutoDeploy does not support build_config
llm_args.pop("build_config", None)
llm = AutoDeployLLM(**llm_args)
elif backend == 'tensorrt' or backend == 'trt':
llm_args.pop("backend")
llm = LLM(**llm_args)
else:
raise click.BadParameter(
f"{backend} is not a known backend, check help for available options.",
param_hint="backend")
server = OpenAIServer(llm=llm,
model=model,
tool_parser=tool_parser,
server_role=server_role,
metadata_server_cfg=metadata_server_cfg,
disagg_cluster_config=disagg_cluster_config,
multimodal_server_config=multimodal_server_config,
chat_template=chat_template)
# Optionally disable GC (default: not disabled)
if os.getenv("TRTLLM_SERVER_DISABLE_GC", "0") == "1":
gc.disable()
asyncio.run(server(host, port, sockets=[s]))
def launch_mm_encoder_server(
host: str,
port: int,
encoder_args: dict,
metadata_server_cfg: Optional[MetadataServerConfig] = None,
):
model = encoder_args["model"]
encoder_args.pop("build_config")
mm_encoder = MultimodalEncoder(**encoder_args)
server = OpenAIServer(llm=mm_encoder,
model=model,
server_role=ServerRole.MM_ENCODER,
metadata_server_cfg=metadata_server_cfg,
tool_parser=None)
asyncio.run(server(host, port))
class ChoiceWithAlias(click.Choice):
def __init__(self,
choices: Sequence[str],
aliases: Mapping[str, str],
case_sensitive: bool = True) -> None:
super().__init__(choices, case_sensitive)
self.aliases = aliases
def to_info_dict(self) -> Dict[str, Any]:
info_dict = super().to_info_dict()
info_dict["aliases"] = self.aliases
return info_dict
def convert(self, value: Any, param: Optional["click.Parameter"],
ctx: Optional["click.Context"]) -> Any:
if value in self.aliases:
value = self.aliases[value]
return super().convert(value, param, ctx)
@click.command("serve")
@click.argument("model", type=str)
@click.option("--tokenizer",
type=str,
default=None,
help=help_info_with_stability_tag("Path | Name of the tokenizer.",
"beta"))
@click.option(
"--custom_tokenizer",
type=str,
default=None,
help=help_info_with_stability_tag(
"Custom tokenizer type: alias (e.g., 'deepseek_v32') or Python import path "
"(e.g., 'tensorrt_llm.tokenizer.deepseek_v32.DeepseekV32Tokenizer').",
"prototype"))
@click.option("--host",
type=str,
default="localhost",
help=help_info_with_stability_tag("Hostname of the server.",
"beta"))
@click.option("--port",
type=int,
default=8000,
help=help_info_with_stability_tag("Port of the server.", "beta"))
@click.option(
"--backend",
type=ChoiceWithAlias(["pytorch", "tensorrt", "_autodeploy"],
{"trt": "tensorrt"}),
default="pytorch",
help=help_info_with_stability_tag(
"The backend to use to serve the model. Default is pytorch backend.",
"beta"))
@click.option(
"--custom_module_dirs",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
multiple=True,
help=help_info_with_stability_tag(
"Paths to custom module directories to import.", "prototype"),
)
@click.option('--log_level',
type=click.Choice(severity_map.keys()),
default='info',
help=help_info_with_stability_tag("The logging level.", "beta"))
@click.option("--max_beam_width",
type=int,
default=BuildConfig.model_fields["max_beam_width"].default,
help=help_info_with_stability_tag(
"Maximum number of beams for beam search decoding.", "beta"))
@click.option("--max_batch_size",
type=int,
default=BuildConfig.model_fields["max_batch_size"].default,
help=help_info_with_stability_tag(
"Maximum number of requests that the engine can schedule.",
"beta"))
@click.option(
"--max_num_tokens",
type=int,
default=BuildConfig.model_fields["max_num_tokens"].default,
help=help_info_with_stability_tag(
"Maximum number of batched input tokens after padding is removed in each batch.",
"beta"))
@click.option(
"--max_seq_len",
type=int,
default=BuildConfig.model_fields["max_seq_len"].default,
help=help_info_with_stability_tag(
"Maximum total length of one request, including prompt and outputs. "
"If unspecified, the value is deduced from the model config.", "beta"))
@click.option("--tensor_parallel_size",
"--tp_size",
type=int,
default=1,
help=help_info_with_stability_tag('Tensor parallelism size.',
'beta'))
@click.option("--pipeline_parallel_size",
"--pp_size",
type=int,
default=1,
help=help_info_with_stability_tag('Pipeline parallelism size.',
'beta'))
@click.option("--context_parallel_size",
"--cp_size",
type=int,
default=1,
help=help_info_with_stability_tag('Context parallelism size.',
'beta'))
@click.option("--moe_expert_parallel_size",
"--ep_size",
type=int,
default=None,
help=help_info_with_stability_tag("expert parallelism size",
"beta"))
@click.option("--moe_cluster_parallel_size",
"--cluster_size",
type=int,
default=None,
help=help_info_with_stability_tag(
"expert cluster parallelism size", "beta"))
@click.option(
"--gpus_per_node",
type=int,
default=None,
help=help_info_with_stability_tag(
"Number of GPUs per node. Default to None, and it will be detected automatically.",
"beta"))
@click.option("--free_gpu_memory_fraction",
"--kv_cache_free_gpu_memory_fraction",
type=float,
default=0.9,
help=help_info_with_stability_tag(
"Free GPU memory fraction reserved for KV Cache, "
"after allocating model weights and buffers.", "beta"))
@click.option("--num_postprocess_workers",
type=int,
default=0,
help=help_info_with_stability_tag(
"Number of workers to postprocess raw responses "
"to comply with OpenAI protocol.", "prototype"))
@click.option("--trust_remote_code",
is_flag=True,
default=False,
help=help_info_with_stability_tag("Flag for HF transformers.",
"beta"))
@click.option("--revision",
type=str,
default=None,
help=help_info_with_stability_tag(
"The revision to use for the HuggingFace model "
"(branch name, tag name, or commit id).", "beta"))
@click.option(
"--config",
"--extra_llm_api_options",
"extra_llm_api_options",
type=str,
default=None,
help=help_info_with_stability_tag(
"Path to a YAML file that overwrites the parameters specified by trtllm-serve. "
"Can be specified as either --config or --extra_llm_api_options.",
"prototype"))
@click.option(
"--reasoning_parser",
type=click.Choice(ReasoningParserFactory.parsers.keys()),
default=None,
help=help_info_with_stability_tag(
"Specify the parser for reasoning models.", "prototype"),
)
@click.option(
"--tool_parser",
type=click.Choice(ToolParserFactory.parsers.keys()),
default=None,
help=help_info_with_stability_tag("Specify the parser for tool models.",
"prototype"),
)
@click.option("--metadata_server_config_file",
type=str,
default=None,
help=help_info_with_stability_tag(
"Path to metadata server config file", "prototype"))
@click.option(
"--server_role",
type=str,
default=None,
help=help_info_with_stability_tag(
"Server role. Specify this value only if running in disaggregated mode.",
"prototype"))
@click.option(
"--fail_fast_on_attention_window_too_large",
is_flag=True,
default=False,
help=help_info_with_stability_tag(
"Exit with runtime error when attention window is too large to fit even a single sequence in the KV cache.",
"prototype"))
@click.option("--otlp_traces_endpoint",
type=str,
default=None,
help=help_info_with_stability_tag(
"Target URL to which OpenTelemetry traces will be sent.",
"prototype"))
@click.option("--disagg_cluster_uri",
type=str,
default=None,
help=help_info_with_stability_tag(
"URI of the disaggregated cluster.", "prototype"))
@click.option("--enable_chunked_prefill",
is_flag=True,
default=False,
help=help_info_with_stability_tag("Enable chunked prefill",
"prototype"))
@click.option("--media_io_kwargs",
type=str,
default=None,
help=help_info_with_stability_tag(
"Keyword arguments for media I/O.", "prototype"))
@click.option("--chat_template",
type=str,
default=None,
help=help_info_with_stability_tag(
"Specify a custom chat template. "
"Can be a file path or one-liner template string",
"prototype"))
def serve(
model: str, tokenizer: Optional[str], custom_tokenizer: Optional[str],
host: str, port: int, log_level: str, backend: str, max_beam_width: int,
max_batch_size: int, max_num_tokens: int, max_seq_len: int,
tensor_parallel_size: int, pipeline_parallel_size: int,
context_parallel_size: int, moe_expert_parallel_size: Optional[int],
moe_cluster_parallel_size: Optional[int], gpus_per_node: Optional[int],
free_gpu_memory_fraction: float, num_postprocess_workers: int,
trust_remote_code: bool, revision: Optional[str],
extra_llm_api_options: Optional[str], reasoning_parser: Optional[str],
tool_parser: Optional[str], metadata_server_config_file: Optional[str],
server_role: Optional[str],
fail_fast_on_attention_window_too_large: bool,
otlp_traces_endpoint: Optional[str], enable_chunked_prefill: bool,
disagg_cluster_uri: Optional[str], media_io_kwargs: Optional[str],
custom_module_dirs: list[Path], chat_template: Optional[str]):
"""Running an OpenAI API compatible server
MODEL: model name | HF checkpoint path | TensorRT engine path
"""
logger.set_level(log_level)
for custom_module_dir in custom_module_dirs:
try:
import_custom_module_from_dir(custom_module_dir)
except Exception as e:
logger.error(
f"Failed to import custom module from {custom_module_dir}: {e}")
raise e
llm_args, _ = get_llm_args(
model=model,
tokenizer=tokenizer,
custom_tokenizer=custom_tokenizer,
backend=backend,
max_beam_width=max_beam_width,
max_batch_size=max_batch_size,
max_num_tokens=max_num_tokens,
max_seq_len=max_seq_len,
tensor_parallel_size=tensor_parallel_size,
pipeline_parallel_size=pipeline_parallel_size,
context_parallel_size=context_parallel_size,
moe_expert_parallel_size=moe_expert_parallel_size,
moe_cluster_parallel_size=moe_cluster_parallel_size,
gpus_per_node=gpus_per_node,
free_gpu_memory_fraction=free_gpu_memory_fraction,
num_postprocess_workers=num_postprocess_workers,
trust_remote_code=trust_remote_code,
revision=revision,
reasoning_parser=reasoning_parser,
fail_fast_on_attention_window_too_large=
fail_fast_on_attention_window_too_large,
otlp_traces_endpoint=otlp_traces_endpoint,
enable_chunked_prefill=enable_chunked_prefill)
llm_args_extra_dict = {}
if extra_llm_api_options is not None:
with open(extra_llm_api_options, 'r') as f:
llm_args_extra_dict = yaml.safe_load(f)
llm_args = update_llm_args_with_extra_dict(llm_args, llm_args_extra_dict)
metadata_server_cfg = parse_metadata_server_config_file(
metadata_server_config_file)
# Specify disagg_cluster_config in config file or through command line "--disagg_cluster_uri",
# but disagg_cluster_uri takes precedence over cluster uri in config file
disagg_cluster_config = llm_args.pop("disagg_cluster", None)
if disagg_cluster_config:
disagg_cluster_config = extract_disagg_cluster_config(
disagg_cluster_config, disagg_cluster_uri)
elif disagg_cluster_uri:
disagg_cluster_config = DisaggClusterConfig(
cluster_uri=disagg_cluster_uri)
if metadata_server_cfg is not None or disagg_cluster_config is not None:
assert (
server_role is not None
), "server_role is required when metadata_server_cfg or disagg_cluster_config is provided"
try:
server_role = ServerRole[server_role.upper()]
except ValueError:
raise ValueError(f"Invalid server role: {server_role}. " \
f"Must be one of: {', '.join([role.name for role in ServerRole])}")
# Parse media_io_kwargs from JSON string to dict if provided
parsed_media_io_kwargs = None
if media_io_kwargs is not None:
try:
parsed_media_io_kwargs = json.loads(media_io_kwargs)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON for media_io_kwargs: {e}")
multimodal_server_config = MultimodalServerConfig(
media_io_kwargs=parsed_media_io_kwargs)
launch_server(host, port, llm_args, tool_parser, chat_template,
metadata_server_cfg, server_role, disagg_cluster_config,
multimodal_server_config)
@click.command("mm_embedding_serve")
@click.argument("model", type=str)
@click.option("--host",
type=str,
default="localhost",
help="Hostname of the server.")
@click.option("--port", type=int, default=8000, help="Port of the server.")
@click.option('--log_level',
type=click.Choice(severity_map.keys()),
default='info',
help="The logging level.")
@click.option("--max_batch_size",
type=int,
default=BuildConfig.model_fields["max_batch_size"].default,
help="Maximum number of requests that the engine can schedule.")
@click.option(
"--max_num_tokens",
type=int,
default=16384, # set higher default max_num_tokens for multimodal encoder
help=
"Maximum number of batched input tokens after padding is removed in each batch."
)
@click.option("--gpus_per_node",
type=int,
default=None,
help="Number of GPUs per node. Default to None, and it will be "
"detected automatically.")
@click.option("--trust_remote_code",
is_flag=True,
default=False,
help="Flag for HF transformers.")
@click.option(
"--extra_encoder_options",
type=str,
default=None,
help=
"Path to a YAML file that overwrites the parameters specified by trtllm-serve."
)
@click.option("--metadata_server_config_file",
type=str,
default=None,
help="Path to metadata server config file")
def serve_encoder(model: str, host: str, port: int, log_level: str,
max_batch_size: int, max_num_tokens: int,
gpus_per_node: Optional[int], trust_remote_code: bool,
extra_encoder_options: Optional[str],
metadata_server_config_file: Optional[str]):
"""Running an OpenAI API compatible server
MODEL: model name | HF checkpoint path | TensorRT engine path
"""
logger.set_level(log_level)
# TODO: expose more argument progressivly
llm_args, _ = get_llm_args(model=model,
max_batch_size=max_batch_size,
max_num_tokens=max_num_tokens,
gpus_per_node=gpus_per_node,
trust_remote_code=trust_remote_code)
encoder_args_extra_dict = {}
if extra_encoder_options is not None:
with open(extra_encoder_options, 'r') as f:
encoder_args_extra_dict = yaml.safe_load(f)
encoder_args = update_llm_args_with_extra_dict(llm_args,
encoder_args_extra_dict)
metadata_server_cfg = parse_metadata_server_config_file(
metadata_server_config_file)
launch_mm_encoder_server(host, port, encoder_args, metadata_server_cfg)
@click.command("disaggregated")
@click.option("-c",
"--config_file",
type=str,
default=None,
help="Specific option for disaggregated mode.")
@click.option("-m",
"--metadata_server_config_file",
type=str,
default=None,
help="Path to metadata server config file")
@click.option("-t",
"--server_start_timeout",
type=int,
default=180,
help="Server start timeout")
@click.option("-r",
"--request_timeout",
type=int,
default=180,
help="Request timeout")
@click.option("-l",
'--log_level',
type=click.Choice(severity_map.keys()),
default='info',
help="The logging level.")
@click.option(
"--metrics-log-interval",
type=int,
default=0,
help=
"The interval of logging metrics in seconds. Set to 0 to disable metrics logging."
)
def disaggregated(
config_file: Optional[str],
metadata_server_config_file: Optional[str],
server_start_timeout: int,
request_timeout: int,
log_level: str,
metrics_log_interval: int,
):
"""Running server in disaggregated mode"""
logger.set_level(log_level)
disagg_cfg = parse_disagg_config_file(config_file)
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind((disagg_cfg.hostname, disagg_cfg.port))
except OSError as e:
raise RuntimeError(
f"Failed to bind socket to {disagg_cfg.hostname}:{disagg_cfg.port}: {e}"
)
metadata_server_cfg = parse_metadata_server_config_file(
metadata_server_config_file)
server = OpenAIDisaggServer(
config=disagg_cfg,
req_timeout_secs=request_timeout,
server_start_timeout_secs=server_start_timeout,
metadata_server_cfg=metadata_server_cfg,
metrics_interval_secs=metrics_log_interval)
# Disable GC by default
# When concurrency is high, the number of Python objects increases, so
# GC runs frequently and takes a long time to process. In this case,
# requests are not immediately forwarded to CTX workers and GEN workers,
# causing them to run with small batch sizes. Disabling GC can mitigate
# this problem.
# By testing this feature, we didn't observe significant RSS or VMS
# increment, and observed that `count0` (obtained by `gc.get_count()`)
# increases by fewer than 1,000 after every 200,000 requests, while the
# maximum value of `count0` exceeded 3,000,000 during the test.
if os.getenv("TRTLLM_DISAGG_SERVER_DISABLE_GC", "1") == "1":
gc.disable()
asyncio.run(server(disagg_cfg.hostname, disagg_cfg.port, sockets=[s]))
def set_cuda_device():
if (os.getenv("OMPI_COMM_WORLD_RANK")):
env_global_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
elif (os.getenv("SLURM_PROCID")):
env_global_rank = int(os.environ["SLURM_PROCID"])
else:
raise RuntimeError("Could not determine rank from environment")
device_id = env_global_rank % device_count()
print(
f"env_global_rank: {env_global_rank}, set device_id: {device_id} before importing mpi4py"
)
torch.cuda.set_device(device_id)
@click.command("disaggregated_mpi_worker")
@click.option("-c",
"--config_file",
type=str,
default=None,
help="Specific option for disaggregated mode.")
@click.option('--log_level',
type=click.Choice(severity_map.keys()),
default='info',
help="The logging level.")
def disaggregated_mpi_worker(config_file: Optional[str], log_level: str):
"""Launching disaggregated MPI worker"""
from tensorrt_llm._utils import mpi_rank
if os.environ.get(DisaggLauncherEnvs.
TLLM_DISAGG_RUN_REMOTE_MPI_SESSION_CLIENT) != "1":
set_cuda_device()
# Importing mpi4py after setting CUDA device. This is needed to war an issue with mpi4py and CUDA
from mpi4py.futures import MPICommExecutor
from tensorrt_llm._utils import global_mpi_rank, mpi_rank, set_mpi_comm
from tensorrt_llm.llmapi.disagg_utils import split_world_comm
disagg_cfg = parse_disagg_config_file(config_file)
# Run a server with the underlying LLM invokes a RemoteMPISessionClient
if os.environ.get(DisaggLauncherEnvs.
TLLM_DISAGG_RUN_REMOTE_MPI_SESSION_CLIENT) == "1":
instance_idx = os.environ.get(
DisaggLauncherEnvs.TLLM_DISAGG_INSTANCE_IDX)
server_cfg = disagg_cfg.server_configs[int(instance_idx)]
llm_args, llm_args_extra_dict = get_llm_args(**server_cfg.other_args)
llm_args = update_llm_args_with_extra_dict(llm_args,
llm_args_extra_dict)
# Ignore the non-LLM args
llm_args.pop("router", None)
_launch_disaggregated_server(config_file, llm_args)
return
is_leader, instance_idx, sub_comm = split_world_comm(
disagg_cfg.server_configs)
logger.set_level(log_level)
set_mpi_comm(sub_comm)
logger.info(
f"mpi_session is provided for LLM instance. Global MPI rank: {global_mpi_rank()}, sub-comm MPI rank: {mpi_rank()}"
)
# Leader ranks will start the trtllm-server using it's own server config
# and start a RemoteMPISessionServer to accept MPI tasks
if is_leader:
os.environ[DisaggLauncherEnvs.TLLM_DISAGG_INSTANCE_IDX] = str(
instance_idx)
server_cfg = disagg_cfg.server_configs[instance_idx]
llm_args, llm_args_extra_dict = get_llm_args(**server_cfg.other_args)
llm_args = update_llm_args_with_extra_dict(llm_args,
llm_args_extra_dict)
_launch_disaggregated_leader(sub_comm, instance_idx, config_file,
log_level)
else:
# Common workers
with MPICommExecutor(sub_comm) as executor:
if not is_leader and executor is not None:
raise RuntimeError(
f"rank{global_mpi_rank()} should not have executor")
class DisaggLauncherEnvs(StrEnum):
TLLM_DISAGG_INSTANCE_IDX = "TLLM_DISAGG_INSTANCE_IDX"
TLLM_DISAGG_RUN_REMOTE_MPI_SESSION_CLIENT = "TLLM_DISAGG_RUN_REMOTE_MPI_SESSION_CLIENT"
def _launch_disaggregated_server(disagg_config_file: str, llm_args: dict):
# Launching the server
instance_idx = os.environ.get(DisaggLauncherEnvs.TLLM_DISAGG_INSTANCE_IDX)
assert instance_idx is not None, f"{DisaggLauncherEnvs.TLLM_DISAGG_INSTANCE_IDX} should be set by the launcher"
disagg_config = parse_disagg_config_file(disagg_config_file)
server_cfg = disagg_config.server_configs[int(instance_idx)]
logger.info(
f"rank {mpi_rank()} for index {instance_idx} launch the disagg server")
launch_server(host=server_cfg.hostname,
port=server_cfg.port,
llm_args=llm_args)
def _launch_disaggregated_leader(sub_comm, instance_idx: int, config_file: str,
log_level: str):
global _child_p_global # Declare usage of global variable
# Assuming logger and mpi_rank are available from module imports or passed in
from tensorrt_llm._utils import mpi_rank
from tensorrt_llm.llmapi.mgmn_leader_node import \
launch_server_main as launch_remote_mpi_session_server
from tensorrt_llm.llmapi.mpi_session import split_mpi_env
# This mimics the behavior of trtllm-llmapi-launch
# TODO: Make the port allocation atomic
free_ipc_addr = find_free_ipc_addr()
os.environ[LlmLauncherEnvs.TLLM_SPAWN_PROXY_PROCESS] = "1"
os.environ[
LlmLauncherEnvs.TLLM_SPAWN_PROXY_PROCESS_IPC_ADDR.value] = free_ipc_addr
os.environ[DisaggLauncherEnvs.TLLM_DISAGG_RUN_REMOTE_MPI_SESSION_CLIENT.
value] = "1"
os.environ[DisaggLauncherEnvs.TLLM_DISAGG_INSTANCE_IDX] = str(instance_idx)
logger.debug(
f"proxy controller address: {os.environ[LlmLauncherEnvs.TLLM_SPAWN_PROXY_PROCESS_IPC_ADDR]}"
)
# The MPI-related environment variables will invoke duplicate MPI_Init in
# the forked process, so we need to remove them before launching the server
# process.
non_mpi_env, mpi_env = split_mpi_env()
assert LlmLauncherEnvs.TLLM_SPAWN_PROXY_PROCESS in non_mpi_env
assert LlmLauncherEnvs.TLLM_SPAWN_PROXY_PROCESS_IPC_ADDR in non_mpi_env
assert DisaggLauncherEnvs.TLLM_DISAGG_INSTANCE_IDX in non_mpi_env
assert DisaggLauncherEnvs.TLLM_DISAGG_RUN_REMOTE_MPI_SESSION_CLIENT in non_mpi_env
# Two steps:
# 1. Run the LLM-API Proxy in a separate process for streaming performance.
# The Proxy will create a RemoteMpiSessionClient as mpi_session in LLM
# class.
command = [
"python3", sys.argv[0], "disaggregated_mpi_worker", "-c", config_file,
"--log_level", log_level
]
logger.info(
f"rank {mpi_rank()} step1: preparing to launch command: {command}")
# Store original signal handlers
original_sigterm_handler = signal.getsignal(signal.SIGTERM)
original_sigint_handler = signal.getsignal(signal.SIGINT)
# Register new signal handlers
signal.signal(signal.SIGTERM, _signal_handler_cleanup_child)
signal.signal(signal.SIGINT, _signal_handler_cleanup_child)
try:
_child_p_global = subprocess.Popen(
command,
env=non_mpi_env,
stdout=sys.stdout, # Redirect to parent's stdout
stderr=sys.stderr, # Redirect to parent's stderr
start_new_session=True)
logger.info(
f"Parent process (PID {os.getpid()}) launched child process (PID {_child_p_global.pid})."
)
logger.info(f"rank {mpi_rank()} step2: start the mpi session server")
# 2. Run the RemoteMpiSessionServer to accept MPI tasks
assert sub_comm is not None
assert sub_comm.Get_rank() == 0
# This is a blocking call
launch_remote_mpi_session_server(sub_comm)
finally:
# Restore original signal handlers
signal.signal(signal.SIGTERM, original_sigterm_handler)
signal.signal(signal.SIGINT, original_sigint_handler)
if _child_p_global: # If Popen was successful and object exists
logger.info(
f"Parent process (PID {os.getpid()}) in finally block. Cleaning up child process (PID: {_child_p_global.pid})."
)
# Check if child is still running
if _child_p_global.poll() is None:
_child_p_global.terminate()
try:
_child_p_global.wait(timeout=30)
except subprocess.TimeoutExpired:
logger.warning(
f"Child process {_child_p_global.pid} timed out on terminate (30s), killing."
)
_child_p_global.kill()
try:
_child_p_global.wait(timeout=30)
except subprocess.TimeoutExpired:
logger.error(
f"Child process {_child_p_global.pid} failed to be killed even after 30s."
)
assert _child_p_global.poll(
) is not None, f"the subprocess should be terminated"
# Check if the process was launched and assert it's terminated
if _child_p_global and hasattr(_child_p_global,
'pid') and _child_p_global.pid is not None:
final_status = _child_p_global.poll()
assert final_status is not None, \
f"The subprocess (PID {_child_p_global.pid}) should be terminated, but its status is {final_status}"
logger.info(
f"Subprocess (PID {_child_p_global.pid}) final status: {final_status}"
)
elif _child_p_global is None:
# This implies Popen might have failed or was not reached.
# If Popen failed, an exception would likely have occurred earlier.
logger.info(
"Child process was not assigned to _child_p_global, skipping final termination assertion."
)
class DefaultGroup(click.Group):
"""Custom Click group to allow default command behavior"""
def resolve_command(self, ctx, args):
# If the first argument is not a recognized subcommand, assume "serve"
if args and args[0] not in self.commands:
return "serve", self.commands["serve"], args
return super().resolve_command(ctx, args)
main = DefaultGroup(
commands={
"serve": serve,
"disaggregated": disaggregated,
"disaggregated_mpi_worker": disaggregated_mpi_worker,
"mm_embedding_serve": serve_encoder
})
if __name__ == "__main__":
main()