TensorRT-LLMs/tests/integration/defs/perf/disagg/utils/common.py
fredricz-20070104 621156ad44
[None][chore] Fix GB300 support issues (#10196)
Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>
Signed-off-by: fredricz-20070104 <226039983+fredricz-20070104@users.noreply.github.com>
2025-12-23 10:42:41 +08:00

223 lines
7.5 KiB
Python

"""Disaggregated Benchmark Configuration."""
import os
from datetime import datetime
SESSION_COLLECT_CMD_TYPE = "session_collect"
# GPU resource configuration
# Simplified - only fields actually used in the codebase
GPU_RESOURCE_CONFIG = {
# OCI GB200
"GB200": {
"gres_gpu": 4, # srun --gres parameter (None = not required)
"lock_freq_graphics_mhz": 2062, # GPU graphics clock lock frequency (MHz)
"lock_freq_memory_mhz": 3996, # GPU memory clock lock frequency (MHz)
},
# OCI GB300
"GB300": {
"gres_gpu": None, # GB300 does not require gres
"lock_freq_graphics_mhz": None, # TODO: Set GB300 lock frequency
"lock_freq_memory_mhz": None,
},
# H100
"H100": {
"gres_gpu": None, # H100 does not require gres
"lock_freq_graphics_mhz": None, # TODO: Set H100 lock frequency
"lock_freq_memory_mhz": None,
},
# B200
"B200": {
"gres_gpu": 4,
"lock_freq_graphics_mhz": None, # TODO: Set B200 lock frequency
"lock_freq_memory_mhz": None,
},
# B300
"B300": {
"gres_gpu": 4,
"lock_freq_graphics_mhz": None, # TODO: Set B300 lock frequency
"lock_freq_memory_mhz": None,
},
}
class EnvManager:
"""Environment variable manager."""
@staticmethod
def get_gpu_type() -> str:
return os.getenv("GPU_TYPE", "GB200")
@staticmethod
def get_slurm_partition() -> str:
return os.getenv("SLURM_PARTITION", "<You slurm partition>")
@staticmethod
def get_slurm_account() -> str:
return os.getenv("SLURM_ACCOUNT", "<You slurm account>")
@staticmethod
def get_slurm_job_name() -> str:
return os.getenv("SLURM_JOB_NAME", "unified-benchmark")
@staticmethod
def get_slurm_set_segment() -> bool:
gpu_type = EnvManager.get_gpu_type()
gpu_type_support_segment = {"GB200": True, "GB300": True}
return gpu_type_support_segment.get(gpu_type, False)
@staticmethod
def get_slurm_extra_args() -> str:
gpu_type = EnvManager.get_gpu_type()
gpu_type_support_extra_args = {"GB200": "--gres=gpu:4", "GB300": ""}
return gpu_type_support_extra_args.get(gpu_type, "")
@staticmethod
def get_container_image() -> str:
return os.getenv("CONTAINER_IMAGE", "")
@staticmethod
def get_script_dir() -> str:
return os.getenv("SCRIPT_DIR", "<Your benchmark script directory>")
@staticmethod
def get_work_dir() -> str:
return os.getenv("WORK_DIR", "<Your working directory>")
@staticmethod
def get_repo_dir() -> str:
return os.getenv("REPO_DIR", "<Your TensorRT-LLM repository directory>")
@staticmethod
def get_trtllm_wheel_path() -> str:
return os.getenv("TRTLLM_WHEEL_PATH", "<Your TensorRT-LLM wheel path>")
@staticmethod
def get_model_dir() -> str:
return os.getenv("MODEL_DIR", "<Your model directory>")
@staticmethod
def get_dataset_dir() -> str:
return os.getenv("DATASET_DIR", "<Your dataset directory>")
@staticmethod
def get_output_path() -> str:
output_path = os.getenv(
"OUTPUT_PATH", "<The csv and disagg comparison HTML output directory>"
)
# Only create directory if it's a valid path (not a placeholder)
if output_path and not output_path.startswith("<"):
os.makedirs(output_path, exist_ok=True)
return output_path
@staticmethod
def get_install_mode() -> str:
return os.getenv("INSTALL_MODE", "none")
@staticmethod
def get_container_mount(model_name: str = "") -> str:
work_dir = EnvManager.get_work_dir()
script_dir = EnvManager.get_script_dir()
model_dir = EnvManager.get_model_dir()
dataset_dir = EnvManager.get_dataset_dir()
output_path = EnvManager.get_output_path()
repo_dir = EnvManager.get_repo_dir()
trtllm_wheel_path = EnvManager.get_trtllm_wheel_path()
mounts = [
f"{work_dir}:{work_dir}",
f"{script_dir}:{script_dir}",
f"{model_dir}:{model_dir}",
f"{output_path}:{output_path}",
]
# Kimi-K2 needs 640G of shared memory, otherwise will cause host memory OOM.
if model_name.find("kimi-k2") != -1:
mounts.append("tmpfs:/dev/shm:size=640G")
if dataset_dir and not dataset_dir.startswith("<"):
mounts.append(f"{dataset_dir}:{dataset_dir}")
# Add repo_dir if available
if repo_dir and not repo_dir.startswith("<"):
mounts.append(f"{repo_dir}:{repo_dir}")
if trtllm_wheel_path and not trtllm_wheel_path.startswith("<"):
trtllm_wheel_dir = os.path.dirname(trtllm_wheel_path)
mounts.append(f"{trtllm_wheel_dir}:{trtllm_wheel_dir}")
return ",".join(mounts)
@staticmethod
def get_debug_mode() -> bool:
return os.getenv("DEBUG_MODE", "0") == "1"
@staticmethod
def get_debug_job_id() -> str:
return os.getenv("DEBUG_JOB_ID", "908390")
CONFIG_BASE_DIR = os.path.join(EnvManager.get_work_dir(), "test_configs")
def extract_config_fields(config_data: dict) -> dict:
"""Extract critical fields from configuration data to generate test ID and log directory."""
# Extract basic fields
isl = config_data["benchmark"]["input_length"]
osl = config_data["benchmark"]["output_length"]
ctx_num = config_data["hardware"]["num_ctx_servers"]
gen_num = config_data["hardware"]["num_gen_servers"]
ctx_max_seq_len = config_data["worker_config"]["ctx"]["max_seq_len"]
gen_max_seq_len = config_data["worker_config"]["gen"]["max_seq_len"]
gen_tp_size = config_data["worker_config"]["gen"]["tensor_parallel_size"]
gen_batch_size = config_data["worker_config"]["gen"]["max_batch_size"]
gen_enable_dp = config_data["worker_config"]["gen"]["enable_attention_dp"]
streaming = config_data["benchmark"]["streaming"]
cache_transceiver_backend = config_data["worker_config"]["gen"]["cache_transceiver_config"][
"backend"
]
gen_max_tokens = config_data["worker_config"]["gen"]["max_num_tokens"]
gen_max_batch_size = config_data["worker_config"]["gen"]["max_batch_size"]
eplb_slots = (
config_data["worker_config"]["gen"]
.get("moe_config", {})
.get("load_balancer", {})
.get("num_slots", 0)
)
# Get MTP size
gen_config = config_data["worker_config"]["gen"]
mtp_size = 0
if "speculative_config" in gen_config:
mtp_size = gen_config["speculative_config"].get("num_nextn_predict_layers", 0)
# Generate derived fields
dep_flag = "dep" if gen_enable_dp else "tep"
date_prefix = datetime.now().strftime("%Y%m%d")
log_base = f"{date_prefix}/{isl}-{osl}"
context_dir = (
f"disagg_ctx{ctx_num}_gen{gen_num}_{dep_flag}{gen_tp_size}_"
f"batch{gen_batch_size}_eplb{eplb_slots}_mtp{mtp_size}"
)
return {
"isl": isl,
"osl": osl,
"ctx_num": ctx_num,
"gen_num": gen_num,
"gen_tp_size": gen_tp_size,
"gen_batch_size": gen_batch_size,
"gen_enable_dp": gen_enable_dp,
"eplb_slots": eplb_slots,
"mtp_size": mtp_size,
"dep_flag": dep_flag,
"cache_transceiver_backend": cache_transceiver_backend,
"log_base": log_base,
"context_dir": context_dir,
"gen_max_tokens": gen_max_tokens,
"gen_max_batch_size": gen_max_batch_size,
"streaming": streaming,
"ctx_max_seq_len": ctx_max_seq_len,
"gen_max_seq_len": gen_max_seq_len,
}