mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* fix for cp > kvHeadNum Signed-off-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com> * fix for None kv_head_num Signed-off-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com> --------- Signed-off-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com>
105 lines
4.7 KiB
C++
105 lines
4.7 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/attentionOp.h"
|
|
#include "tensorrt_llm/common/cublasMMWrapper.h"
|
|
#include "tensorrt_llm/common/quantization.h"
|
|
#include "tensorrt_llm/kernels/gptKernels.h"
|
|
#include "tensorrt_llm/plugins/common/plugin.h"
|
|
#include <cassert>
|
|
#include <set>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::plugins
|
|
{
|
|
|
|
class GPTAttentionPluginCommon : public BasePlugin, public tensorrt_llm::common::op::AttentionOp
|
|
{
|
|
public:
|
|
GPTAttentionPluginCommon() = delete;
|
|
|
|
GPTAttentionPluginCommon(int layer_idx, int num_heads, int vision_start, int vision_length, int num_kv_heads,
|
|
int num_kv_heads_origin, int head_size, int unidirectional, float q_scaling, float attn_logit_softcapping_scale,
|
|
tensorrt_llm::kernels::PositionEmbeddingType position_embedding_type,
|
|
int rotary_embedding_dim, // for RoPE. Use 0 for non-RoPE
|
|
float rotary_embedding_base, tensorrt_llm::kernels::RotaryScalingType rotary_embedding_scale_type,
|
|
float rotary_embedding_scale, float rotary_embedding_short_m_scale, float rotary_embedding_long_m_scale,
|
|
int rotary_embedding_max_positions, int rotary_embedding_original_max_positions, int tp_size,
|
|
int tp_rank, // for ALiBi
|
|
bool unfuse_qkv_gemm, // for AutoPP
|
|
bool use_logn_scaling, // for LognScaling
|
|
tensorrt_llm::kernels::ContextFMHAType context_fmha_type, int kv_cache_quant_mode, bool remove_input_padding,
|
|
tensorrt_llm::kernels::AttentionMaskType mask_type,
|
|
tensorrt_llm::kernels::BlockSparseParams block_sparse_params, bool paged_kv_cache, int tokens_per_block,
|
|
nvinfer1::DataType type, int32_t max_context_length, bool qkv_bias_enabled, bool cross_attention = false,
|
|
int max_distance = 0, bool pos_shift_enabled = false, bool dense_context_fmha = false,
|
|
bool use_paged_context_fmha = true, bool use_fp8_context_fmha = true, bool has_full_attention_mask = false,
|
|
bool use_cache = true, bool is_spec_decoding_enabled = false,
|
|
bool spec_decoding_is_generation_length_variable = false, int32_t spec_decoding_max_generation_length = 1,
|
|
bool is_mla_enabled = false, int q_lora_rank = 0, int kv_lora_rank = 0, int qk_nope_head_dim = 0,
|
|
int qk_rope_head_dim = 0, int v_head_dim = 0, bool fuse_fp4_quant = false, bool skip_attn = false,
|
|
int cp_size = 1, int cp_rank = 0, std::set<int32_t> cp_group = {});
|
|
|
|
GPTAttentionPluginCommon(void const* data, size_t length);
|
|
|
|
~GPTAttentionPluginCommon() override = default;
|
|
|
|
template <typename T>
|
|
int enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
|
|
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream);
|
|
|
|
//! This is called on every trt Engine creation
|
|
int initialize() noexcept override;
|
|
//! This is called on every trt Engine destroy
|
|
void terminate() noexcept override;
|
|
|
|
//! This is called on every trt ExecutionContext creation by TRT
|
|
//! Note TRT does not call the initialize on cloned plugin, so clone internally should do initialization.
|
|
template <typename T>
|
|
T* cloneImpl() const noexcept;
|
|
|
|
//! This is called on evert trt Engine or ExecutionContext destroy.
|
|
//! None-cloned plugins will call terminate and then call destroy, while the cloned plugins will call destroy only
|
|
//! So plugin should put the resource release inside destroy.
|
|
void destroy() noexcept override;
|
|
|
|
size_t getCommonSerializationSize() const noexcept;
|
|
void serializeCommon(void* buffer) const noexcept;
|
|
|
|
protected:
|
|
std::string const mLayerName;
|
|
};
|
|
|
|
class GPTAttentionPluginCreatorCommon : public BaseCreator
|
|
{
|
|
public:
|
|
GPTAttentionPluginCreatorCommon();
|
|
|
|
nvinfer1::PluginFieldCollection const* getFieldNames() noexcept override;
|
|
|
|
template <typename T>
|
|
T* deserializePluginImpl(char const* name, void const* serialData, size_t serialLength) noexcept;
|
|
|
|
protected:
|
|
std::vector<nvinfer1::PluginField> mPluginAttributes;
|
|
nvinfer1::PluginFieldCollection mFC{};
|
|
};
|
|
|
|
} // namespace tensorrt_llm::plugins
|