TensorRT-LLMs/cpp/tensorrt_llm/runtime/torchView.h
2023-09-28 09:00:05 -07:00

123 lines
3.2 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include <ATen/ATen.h>
#include <torch/types.h>
#include <memory>
namespace tensorrt_llm::runtime
{
class TorchView : virtual public ITensor
{
public:
static ITensor::UniquePtr of(at::Tensor&& tensor)
{
return ITensor::UniquePtr{new TorchView{std::move(tensor)}};
}
static ITensor::UniquePtr of(at::Tensor tensor)
{
return ITensor::UniquePtr{new TorchView{std::move(tensor)}};
}
void* data() override
{
if (getSize() == 0)
return nullptr;
return mTensor.data_ptr();
}
[[nodiscard]] void const* data() const override
{
if (getSize() == 0)
return nullptr;
return mTensor.data_ptr();
}
[[nodiscard]] size_t getSize() const override
{
return mTensor.numel();
}
[[nodiscard]] std::size_t getCapacity() const override
{
return mCapacity;
}
[[nodiscard]] DataType getDataType() const override
{
return TorchUtils::dataType(mTensor.scalar_type());
}
[[nodiscard]] MemoryType getMemoryType() const override
{
return mTensor.is_cuda() ? MemoryType::kGPU : mTensor.is_pinned() ? MemoryType::kPINNED : MemoryType::kCPU;
}
void resize(std::size_t newSize) override
{
TLLM_CHECK(newSize <= getCapacity());
if (newSize != getSize())
{
using dimType = std::remove_reference_t<decltype(mDims.d[0])>;
auto constexpr max_size = std::numeric_limits<dimType>::max();
TLLM_CHECK_WITH_INFO(newSize <= max_size, "New size is too large. Use reshape() instead.");
mTensor.resize_({static_cast<at::IntArrayRef::value_type>(newSize)});
mDims.nbDims = 1;
mDims.d[0] = static_cast<dimType>(newSize);
}
}
void release() override
{
resize(0);
}
[[nodiscard]] Shape const& getShape() const override
{
return mDims;
}
void reshape(Shape const& dims) override
{
TLLM_CHECK(volumeNonNegative(dims) <= getCapacity());
mTensor.resize_(TorchUtils::shape(dims));
mDims = dims;
}
private:
explicit TorchView(at::Tensor&& tensor)
: mTensor(tensor)
, mDims{TorchUtils::shape(mTensor.sizes())}
, mCapacity{static_cast<std::size_t>(mTensor.numel())}
{
TLLM_CHECK(mTensor.is_contiguous());
};
at::Tensor mTensor;
Shape mDims;
std::size_t mCapacity;
};
} // namespace tensorrt_llm::runtime