mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
123 lines
3.2 KiB
C++
123 lines
3.2 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/torchUtils.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <torch/types.h>
|
|
|
|
#include <memory>
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
class TorchView : virtual public ITensor
|
|
{
|
|
public:
|
|
static ITensor::UniquePtr of(at::Tensor&& tensor)
|
|
{
|
|
return ITensor::UniquePtr{new TorchView{std::move(tensor)}};
|
|
}
|
|
|
|
static ITensor::UniquePtr of(at::Tensor tensor)
|
|
{
|
|
return ITensor::UniquePtr{new TorchView{std::move(tensor)}};
|
|
}
|
|
|
|
void* data() override
|
|
{
|
|
if (getSize() == 0)
|
|
return nullptr;
|
|
return mTensor.data_ptr();
|
|
}
|
|
|
|
[[nodiscard]] void const* data() const override
|
|
{
|
|
if (getSize() == 0)
|
|
return nullptr;
|
|
return mTensor.data_ptr();
|
|
}
|
|
|
|
[[nodiscard]] size_t getSize() const override
|
|
{
|
|
return mTensor.numel();
|
|
}
|
|
|
|
[[nodiscard]] std::size_t getCapacity() const override
|
|
{
|
|
return mCapacity;
|
|
}
|
|
|
|
[[nodiscard]] DataType getDataType() const override
|
|
{
|
|
return TorchUtils::dataType(mTensor.scalar_type());
|
|
}
|
|
|
|
[[nodiscard]] MemoryType getMemoryType() const override
|
|
{
|
|
return mTensor.is_cuda() ? MemoryType::kGPU : mTensor.is_pinned() ? MemoryType::kPINNED : MemoryType::kCPU;
|
|
}
|
|
|
|
void resize(std::size_t newSize) override
|
|
{
|
|
TLLM_CHECK(newSize <= getCapacity());
|
|
|
|
if (newSize != getSize())
|
|
{
|
|
using dimType = std::remove_reference_t<decltype(mDims.d[0])>;
|
|
auto constexpr max_size = std::numeric_limits<dimType>::max();
|
|
TLLM_CHECK_WITH_INFO(newSize <= max_size, "New size is too large. Use reshape() instead.");
|
|
mTensor.resize_({static_cast<at::IntArrayRef::value_type>(newSize)});
|
|
mDims.nbDims = 1;
|
|
mDims.d[0] = static_cast<dimType>(newSize);
|
|
}
|
|
}
|
|
|
|
void release() override
|
|
{
|
|
resize(0);
|
|
}
|
|
|
|
[[nodiscard]] Shape const& getShape() const override
|
|
{
|
|
return mDims;
|
|
}
|
|
|
|
void reshape(Shape const& dims) override
|
|
{
|
|
TLLM_CHECK(volumeNonNegative(dims) <= getCapacity());
|
|
mTensor.resize_(TorchUtils::shape(dims));
|
|
mDims = dims;
|
|
}
|
|
|
|
private:
|
|
explicit TorchView(at::Tensor&& tensor)
|
|
: mTensor(tensor)
|
|
, mDims{TorchUtils::shape(mTensor.sizes())}
|
|
, mCapacity{static_cast<std::size_t>(mTensor.numel())}
|
|
{
|
|
TLLM_CHECK(mTensor.is_contiguous());
|
|
};
|
|
|
|
at::Tensor mTensor;
|
|
Shape mDims;
|
|
std::size_t mCapacity;
|
|
};
|
|
} // namespace tensorrt_llm::runtime
|