TensorRT-LLMs/tests/tools/plugin_gen/build_engine.py
2023-09-28 09:00:05 -07:00

196 lines
6.8 KiB
Python

import argparse
import math
# include plugins
# yapf: disable
import sys
import time
from pathlib import Path
from typing import List, OrderedDict
import tensorrt as trt
# from plugin import LAYER_NAME, FmhaLayer, get_engine_name
import tensorrt_llm
from tensorrt_llm import Module, str_dtype_to_trt
from tensorrt_llm.builder import Builder, BuilderConfig
from tensorrt_llm.functional import Tensor
from tensorrt_llm.logger import logger
from tensorrt_llm.network import net_guard
sys.path.append('./tmp/output')
from functional import fused_attention_kernel # isort:skip
# yapf: enable
def get_engine_name(head_size: int, dtype: str) -> str:
return f'fmha_{head_size}_{dtype}.engine'
class FmhaLayer(Module):
def __init__(self, num_heads: int, head_size: int, softmax_scale: float):
super().__init__()
self.num_heads = num_heads
self.head_size = head_size
self.softmax_scale = softmax_scale
self.dtype = str_dtype_to_trt('float16')
def forward(self, Q: Tensor, K: Tensor, V: Tensor):
inputs = [Q, K, V]
Out, L, M = fused_attention_kernel(self.softmax_scale, self.num_heads,
*[p.trt_tensor for p in inputs])
Out.mark_output('out', self.dtype)
L.mark_output('L', self.dtype)
M.mark_output('M', self.dtype)
return Out, L, M
def prepare_inputs(self, max_batch_size: int, max_len: int) -> List[Tensor]:
'''
@brief: Prepare inputs Tensors for the model, the given sizes are used to
determine the ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
bs_range = [1, (max_batch_size + 1) // 2, max_batch_size]
max_len_range = [1, (max_len + 1) // 2, max_len]
dynamic_shape = [-1, self.num_heads, -1, self.head_size]
Q = Tensor(name='Q',
dtype=trt.float16,
shape=dynamic_shape,
dim_range=OrderedDict([
('batch_size', [bs_range]),
('num_heads', [self.num_heads]),
('seq_len', [max_len_range]),
('head_size', [self.head_size]),
]))
K = Tensor(name='K',
dtype=trt.float16,
shape=dynamic_shape,
dim_range=OrderedDict([
('batch_size', [bs_range]),
('num_heads', [self.num_heads]),
('seq_len', [max_len_range]),
('head_size', [self.head_size]),
]))
V = Tensor(name='V',
dtype=trt.float16,
shape=dynamic_shape,
dim_range=OrderedDict([
('batch_size', [bs_range]),
('num_heads', [self.num_heads]),
('seq_len', [max_len_range]),
('head_size', [self.head_size]),
]))
return [Q, K, V]
def build_engine(builder: Builder, builder_config: BuilderConfig,
engine_name: str, args: argparse.Namespace) -> trt.IHostMemory:
'''
@brief: Build a TensorRT engine.
@param args: The cmd line arguments.
@return: The built or refitted engine.
'''
# Initialize Module
softmax_scale = 1.0 / math.sqrt(args.head_size)
layer = FmhaLayer(args.num_heads, args.head_size, softmax_scale)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
with net_guard(network):
# Prepare
inputs = layer.prepare_inputs(args.max_batch_size, args.max_seq_len)
# Forward
logger.debug(f'model inputs: {inputs}')
layer(*inputs)
print('dot:')
print(network.to_dot())
layer = network.get_layer_by_name(
"FmhaLayer/PLUGIN_V2_fused_attention_kernelPlugin_2").as_layer()
print('layer', layer.plugin.plugin_type)
print('layer', layer.plugin.plugin_version)
print('layer', layer.plugin.plugin_namespace)
# Network -> Engine
engine = builder.build_engine(network, builder_config)
config_path = Path(args.output_dir) / 'config.json'
builder.save_config(builder_config, str(config_path))
return engine
def build(args):
tensorrt_llm.logger.set_level(args.log_level)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
builder = Builder()
cache = None
builder_config = builder.create_builder_config(
name='fmha_triton',
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache)
engine_name = get_engine_name(args.head_size, args.dtype)
engine = build_engine(builder, builder_config, engine_name, args)
assert engine is not None
engine_path = output_dir / engine_name
logger.info(f'Serializing engine to {str(engine_path)}...')
tik = time.time()
with engine_path.open('wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
ok = builder.save_timing_cache(builder_config,
Path(args.output_dir) / "model.cache")
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--max_batch_size', type=int, default=4)
parser.add_argument('--max_seq_len', type=int, default=256)
parser.add_argument('--num_heads', type=int, default=8)
parser.add_argument('--head_size', type=int, default=64)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16', 'float32'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help='The path of to read timing cache from, will be ignored '
'if the file does not exist')
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument(
'--output_dir',
type=str,
default='outputs',
help='The path to save the serialized engine files, timing cache '
'file and model configs')
args = parser.parse_args()
logger.set_level(args.log_level)
logger.info('Parameters'.center(40, '='))
for k, v in vars(args).items():
logger.info(f' - {k.ljust(15, ".")}: {v}')
logger.info(''.center(40, '='))
tik = time.time()
logger.info('Build TensorRT engine.')
build(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building TRT engine: {t}')