mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
472 lines
19 KiB
Python
472 lines
19 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import List, Optional, Union
|
|
|
|
import tensorrt as trt
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import str_dtype_to_trt
|
|
from ...functional import (Tensor, arange, cast, concat, expand,
|
|
gather_last_token_logits, shape, unsqueeze)
|
|
from ...layers import ColumnLinear, Embedding, LayerNorm, Mamba, Mamba2, RmsNorm
|
|
from ...mapping import Mapping
|
|
from ...module import Module, ModuleList
|
|
from ...plugin import current_all_reduce_helper
|
|
from ..generation_mixin import GenerationMixin
|
|
from ..modeling_utils import PretrainedConfig, PretrainedModel, QuantConfig
|
|
from .config import MambaConfig
|
|
from .convert import convert_from_hf_checkpoint, convert_hf_mamba
|
|
|
|
|
|
class MambaLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.dtype = config.dtype
|
|
self.residual_in_fp32 = config.residual_in_fp32
|
|
n_layer = config.num_hidden_layers
|
|
self.last_layer = layer_idx == n_layer - 1
|
|
|
|
if config.mamba_version == 'Mamba1':
|
|
assert config.mapping.tp_size == 1, "Mamba1 can not support tensor parallelism."
|
|
self.ssm = Mamba(config.hidden_size,
|
|
config.rnn_hidden_size,
|
|
d_state=config.state_size,
|
|
d_conv=config.conv_kernel,
|
|
bias=config.use_bias,
|
|
dtype=config.dtype)
|
|
elif config.mamba_version == 'Mamba2':
|
|
self.ssm = Mamba2(config.hidden_size,
|
|
config.rnn_hidden_size,
|
|
d_state=config.state_size,
|
|
d_conv=config.conv_kernel,
|
|
headdim=config.rnn_head_size,
|
|
ngroups=config.ngroups,
|
|
chunk_size=config.chunk_size,
|
|
bias=config.use_bias,
|
|
rmsnorm=config.ssm_rmsnorm,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size)
|
|
if config.rms_norm:
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
else:
|
|
self.input_layernorm = LayerNorm(
|
|
normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
residual: Tensor,
|
|
conv_state: Tensor,
|
|
ssm_state: Tensor,
|
|
host_request_types: Tensor,
|
|
last_token_ids: Tensor,
|
|
host_context_lengths: Optional[Tensor] = None,
|
|
slot_mapping: Optional[Tensor] = None,
|
|
conv_indices: Optional[Tensor] = None):
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
ssm_out, present_conv, present_ssm = self.ssm(
|
|
hidden_states,
|
|
conv_state=conv_state,
|
|
ssm_state=ssm_state,
|
|
host_request_types=host_request_types,
|
|
last_token_ids=last_token_ids,
|
|
host_context_lengths=host_context_lengths,
|
|
slot_mapping=slot_mapping,
|
|
conv_indices=conv_indices)
|
|
if self.residual_in_fp32:
|
|
residual = residual + cast(ssm_out, 'float32')
|
|
hidden_states = cast(residual, self.dtype)
|
|
else:
|
|
residual = residual + ssm_out
|
|
hidden_states = residual
|
|
|
|
if self.last_layer:
|
|
return hidden_states, None, present_conv, present_ssm
|
|
else:
|
|
return hidden_states, residual, present_conv, present_ssm
|
|
|
|
|
|
class MambaModel(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.d_conv = config.conv_kernel
|
|
self.d_inner = config.rnn_hidden_size // config.mapping.tp_size
|
|
n_layer = config.num_hidden_layers
|
|
self.residual_in_fp32 = config.residual_in_fp32
|
|
if config.vocab_size % config.pad_vocab_size_multiple != 0:
|
|
config.vocab_size += config.pad_vocab_size_multiple - (
|
|
config.vocab_size % config.pad_vocab_size_multiple)
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
self.layers = ModuleList(
|
|
[MambaLayer(config, i) for i in range(n_layer)])
|
|
if config.rms_norm:
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
else:
|
|
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids,
|
|
conv_states,
|
|
ssm_states,
|
|
host_request_types,
|
|
last_token_ids,
|
|
host_context_lengths,
|
|
slot_mapping: Optional[Tensor] = None):
|
|
hidden_states = self.vocab_embedding(input_ids)
|
|
|
|
# Get conv state indices
|
|
indices = None
|
|
if not default_net().plugin_config.mamba_conv1d_plugin:
|
|
batch_size = shape(input_ids, 0)
|
|
indices = expand(
|
|
unsqueeze(arange(0, self.d_conv - 1, dtype='int32'), 0),
|
|
concat([batch_size, self.d_conv - 1]))
|
|
offsets = expand(unsqueeze(last_token_ids, 1),
|
|
concat([batch_size, self.d_conv - 1]))
|
|
indices = unsqueeze(indices + offsets, 1)
|
|
indices = expand(
|
|
indices, concat([batch_size, self.d_inner, self.d_conv - 1]))
|
|
|
|
residual = cast(hidden_states,
|
|
'float32') if self.residual_in_fp32 else hidden_states
|
|
hidden_values = [hidden_states, residual]
|
|
present_convs, present_ssms = [], []
|
|
for layer, past_conv, past_ssm in zip(self.layers, conv_states,
|
|
ssm_states):
|
|
hidden_values = layer(hidden_values[0], hidden_values[1], past_conv,
|
|
past_ssm, host_request_types, last_token_ids,
|
|
host_context_lengths, slot_mapping, indices)
|
|
present_convs.append(hidden_values[2])
|
|
present_ssms.append(hidden_values[3])
|
|
hidden_states = hidden_values[0]
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states, tuple(present_convs), tuple(present_ssms)
|
|
|
|
|
|
class MambaForCausalLM(PretrainedModel):
|
|
config_class = MambaConfig
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__(config)
|
|
dtype = config.dtype
|
|
logits_dtype = config.logits_dtype
|
|
if isinstance(dtype, str):
|
|
self.dtype = str_dtype_to_trt(dtype)
|
|
else:
|
|
assert isinstance(dtype, trt.DataType)
|
|
self.dtype = dtype
|
|
|
|
self.config = config
|
|
self.mamba_version = config.mamba_version
|
|
self.d_inner = config.rnn_hidden_size // config.mapping.tp_size
|
|
self.d_conv = config.conv_kernel
|
|
self.d_state = config.state_size
|
|
self.conv_dim = config.rnn_conv_dim_size // config.mapping.tp_size
|
|
self.gather_context_logits = False
|
|
|
|
if isinstance(logits_dtype, str):
|
|
self._logits_dtype = str_dtype_to_trt(logits_dtype)
|
|
else:
|
|
assert isinstance(logits_dtype, trt.DataType)
|
|
self._logits_dtype = logits_dtype
|
|
|
|
self.backbone = MambaModel(config)
|
|
self.lm_head = ColumnLinear(config.hidden_size,
|
|
config.vocab_size,
|
|
bias=False,
|
|
dtype=dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
|
|
def __post_init__(self):
|
|
return
|
|
|
|
def forward(self,
|
|
input_ids,
|
|
conv_states,
|
|
ssm_states,
|
|
host_request_types,
|
|
last_token_ids,
|
|
last_token_ids_for_logits,
|
|
host_context_lengths,
|
|
slot_mapping: Optional[Tensor] = None):
|
|
hidden_states, present_convs, present_ssms = self.backbone(
|
|
input_ids, conv_states, ssm_states, host_request_types,
|
|
last_token_ids, host_context_lengths, slot_mapping)
|
|
|
|
if not self.gather_context_logits:
|
|
hidden_states = gather_last_token_logits(
|
|
hidden_states, last_token_ids_for_logits,
|
|
default_net().plugin_config.remove_input_padding)
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
lm_logits.mark_output('logits', self._logits_dtype)
|
|
if not default_net().plugin_config.paged_state:
|
|
for i, present_conv in enumerate(present_convs):
|
|
present_conv.mark_output(f'present_conv_state_{i}', self.dtype)
|
|
for i, present_ssm in enumerate(present_ssms):
|
|
present_ssm.mark_output(f'present_rnn_state_{i}', self.dtype)
|
|
|
|
return (lm_logits, present_convs, present_ssms)
|
|
|
|
def prepare_inputs(
|
|
self,
|
|
max_batch_size,
|
|
max_input_len,
|
|
max_seq_len,
|
|
max_num_tokens,
|
|
use_cache,
|
|
max_beam_width: int = 1,
|
|
opt_num_tokens: int = None,
|
|
opt_batch_size: int = 0,
|
|
prompt_embedding_table_size: int = 0,
|
|
max_draft_len: int = 0,
|
|
gather_context_logits: bool = False,
|
|
lora_target_modules: List[str] = None,
|
|
speculative_decoding_draft_tokens_external: bool = False):
|
|
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
|
|
ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
assert speculative_decoding_draft_tokens_external == False, "Speculative decoding is not supported in Mamba"
|
|
assert max_beam_width == 1, "We don't support beam search for the Mamba model."
|
|
|
|
remove_input_padding = default_net().plugin_config.remove_input_padding
|
|
use_gemm_plugin = default_net().plugin_config.gemm_plugin
|
|
paged_state = default_net().plugin_config.paged_state
|
|
multiple_profiles = default_net().plugin_config.multiple_profiles
|
|
use_mamba_conv1d_plugin = default_net(
|
|
).plugin_config.mamba_conv1d_plugin
|
|
|
|
self.gather_context_logits = gather_context_logits
|
|
mapping = self.config.mapping
|
|
|
|
# basic inputs
|
|
enable_ctx_gen_opt_profiles = GenerationMixin.has_ctx_gen_opt_profiles(
|
|
use_gemm_plugin=use_gemm_plugin,
|
|
use_mamba_conv1d_plugin=use_mamba_conv1d_plugin,
|
|
remove_input_padding=remove_input_padding,
|
|
paged_state=paged_state)
|
|
|
|
num_profiles, ranges = GenerationMixin.get_profiles_ranges(
|
|
max_batch_size=max_batch_size,
|
|
max_beam_width=max_beam_width,
|
|
max_input_len=max_input_len,
|
|
max_num_tokens=max_num_tokens,
|
|
max_draft_len=max_draft_len,
|
|
opt_batch_size=opt_batch_size,
|
|
opt_num_tokens=opt_num_tokens,
|
|
enable_ctx_gen_opt_profiles=enable_ctx_gen_opt_profiles,
|
|
multiple_profiles=multiple_profiles)
|
|
|
|
if remove_input_padding:
|
|
assert use_mamba_conv1d_plugin, "mamba_conv1d_plugin is needed to support remove_input_padding"
|
|
input_ids = Tensor(name='input_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([
|
|
('num_tokens', ranges['num_tokens_range']),
|
|
]))
|
|
else:
|
|
input_ids = Tensor(name='input_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1, -1],
|
|
dim_range=OrderedDict([
|
|
('batch_size_beam_width',
|
|
ranges['bb_range']),
|
|
('input_len', ranges['inlen_range']),
|
|
]))
|
|
if mapping.tp_size > 1:
|
|
current_all_reduce_helper().set_workspace_tensor(
|
|
mapping, num_profiles)
|
|
|
|
# recurrent inputs
|
|
conv_states = []
|
|
ssm_states = []
|
|
if use_mamba_conv1d_plugin:
|
|
conv_state_dim_range = OrderedDict([
|
|
('batch_size', ranges['bb_range']),
|
|
('kernel_size', [self.d_conv - 1] * num_profiles),
|
|
('dim_size', [self.conv_dim] * num_profiles),
|
|
])
|
|
else:
|
|
conv_state_dim_range = OrderedDict([
|
|
('batch_size', ranges['bb_range']),
|
|
('dim_size', [self.conv_dim] * num_profiles),
|
|
('kernel_size', [self.d_conv - 1] * num_profiles),
|
|
])
|
|
|
|
if self.mamba_version == 'Mamba2':
|
|
headdim = self.config.rnn_head_size
|
|
nheads = self.d_inner // headdim
|
|
ssm_state_dim_range = OrderedDict([
|
|
('batch_size', ranges['bb_range']),
|
|
('head_size', [nheads] * num_profiles),
|
|
('state_size', [self.d_state] * num_profiles),
|
|
('headdim_size', [headdim] * num_profiles),
|
|
])
|
|
ssm_state_shape = [-1, nheads, self.d_state, headdim]
|
|
else:
|
|
ssm_state_dim_range = OrderedDict([
|
|
('batch_size', ranges['bb_range']),
|
|
('state_size', [self.d_state] * num_profiles),
|
|
('dim_size', [self.d_inner] * num_profiles),
|
|
])
|
|
ssm_state_shape = [-1, self.d_state, self.d_inner]
|
|
one_dim_range = OrderedDict([
|
|
('buffer_count', [1] * num_profiles),
|
|
])
|
|
|
|
for i in range(self.config.num_hidden_layers):
|
|
if default_net().plugin_config.paged_state:
|
|
conv_state = Tensor(name=f'conv_state_ptr_{i}',
|
|
dtype=str_dtype_to_trt('int64'),
|
|
shape=[1],
|
|
dim_range=one_dim_range)
|
|
|
|
ssm_state = Tensor(name=f'rnn_state_ptr_{i}',
|
|
dtype=str_dtype_to_trt('int64'),
|
|
shape=[1],
|
|
dim_range=one_dim_range)
|
|
else:
|
|
if use_mamba_conv1d_plugin:
|
|
conv_state = Tensor(
|
|
name=f'past_conv_state_{i}',
|
|
dtype=self.dtype,
|
|
shape=[-1, self.d_conv - 1, self.conv_dim],
|
|
dim_range=conv_state_dim_range)
|
|
else:
|
|
conv_state = Tensor(
|
|
name=f'past_conv_state_{i}',
|
|
dtype=self.dtype,
|
|
shape=[-1, self.conv_dim, self.d_conv - 1],
|
|
dim_range=conv_state_dim_range)
|
|
|
|
ssm_state = Tensor(name=f'past_rnn_state_{i}',
|
|
dtype=self.dtype,
|
|
shape=ssm_state_shape,
|
|
dim_range=ssm_state_dim_range)
|
|
|
|
conv_states.append(conv_state)
|
|
ssm_states.append(ssm_state)
|
|
|
|
host_request_types = Tensor(
|
|
name='host_request_types',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size', ranges['bb_range'])]),
|
|
)
|
|
|
|
if remove_input_padding:
|
|
host_context_lengths = Tensor(
|
|
name='host_context_lengths',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size', ranges['bb_range'])]),
|
|
)
|
|
else:
|
|
host_context_lengths = None
|
|
|
|
last_token_ids = Tensor(
|
|
name='last_token_ids',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([
|
|
('batch_size', ranges['bbd_range']),
|
|
]),
|
|
)
|
|
last_token_ids_for_logits = None
|
|
if not gather_context_logits:
|
|
last_token_ids_for_logits = last_token_ids
|
|
|
|
return_dict = {
|
|
'input_ids': input_ids,
|
|
'conv_states': conv_states,
|
|
'ssm_states': ssm_states,
|
|
'host_request_types': host_request_types,
|
|
'last_token_ids': last_token_ids,
|
|
'last_token_ids_for_logits': last_token_ids_for_logits,
|
|
'host_context_lengths': host_context_lengths,
|
|
}
|
|
|
|
if default_net().plugin_config.paged_state:
|
|
slot_mapping = Tensor(
|
|
name='slot_mapping',
|
|
dtype=trt.int32,
|
|
shape=[-1],
|
|
dim_range=OrderedDict([('batch_size', ranges['bb_range'])]),
|
|
)
|
|
return_dict['slot_mapping'] = slot_mapping
|
|
|
|
return return_dict
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
import transformers
|
|
|
|
assert hf_model_or_dir is not None
|
|
use_preloading = isinstance(hf_model_or_dir,
|
|
transformers.PreTrainedModel)
|
|
if use_preloading:
|
|
hf_model = hf_model_or_dir
|
|
hf_config_or_dir = hf_model.config
|
|
else:
|
|
hf_model_dir = hf_model_or_dir
|
|
hf_config_or_dir = hf_model_or_dir
|
|
config = MambaConfig.from_hugging_face(hf_config_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
|
|
if not os.path.exists(hf_model_dir):
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir, torch_dtype="auto", trust_remote_code=True)
|
|
|
|
assert isinstance(hf_model, transformers.PreTrainedModel)
|
|
weights = convert_hf_mamba(hf_model, dtype)
|
|
else:
|
|
weights = convert_from_hf_checkpoint(config, hf_model_dir)
|
|
|
|
model = cls(config)
|
|
model.load(weights)
|
|
|
|
return model
|