TensorRT-LLMs/cpp/tests/unit_tests/layers/baseSamplingLayerTest.h
wili 34e63d07e6
feat: Variable-Beam-Width-Search (VBWS) Part2 (#3133)
* feat: Variable-Beam-Width-Search Part2

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search Part2

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search Part2, fix CPP tests

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search Part3, simplify CPP tests

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search Part4, move beam_width_array param

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search, fix CI error

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search part2

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search part2

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search part2, fix pre-commit

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

* feat: Variable-Beam-Width-Search part2, fix review

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>

---------

Signed-off-by: wili-65535 <wili-65535@user.noreply.github.com>
Co-authored-by: wili-65535 <wili-65535@user.noreply.github.com>
2025-04-02 12:31:28 +08:00

193 lines
6.1 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <gtest/gtest.h>
#include <memory>
#include "tensorrt_llm/layers/beamSearchLayer.h"
#include "tensorrt_llm/layers/externalDraftTokensLayer.h"
#include "tensorrt_llm/layers/samplingLayer.h"
#include "tensorrt_llm/layers/topKSamplingLayer.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/kernels/beamSearchKernels.h"
#include "tensorrt_llm/kernels/penaltyKernels.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/common/tllmException.h"
namespace tensorrt_llm::tests::layers::sampling
{
constexpr float EPSILON = 1e-20f;
template <typename T>
void computeProb(T* probs, T const* logits, int batchSize, int vocabSize)
{
// Compute the log probability from logits.
// logits = batchSize x vocabSize.
// probs = softmax(logits) (softmax along with vocab dimension)
// float is used for either T=float or half, since operations of half are
// not fully supported in a host function.
for (int bidx = 0; bidx < batchSize; ++bidx)
{
float maxval = -FLT_MAX;
for (int i = 0; i < vocabSize; ++i)
{
float logit = static_cast<float>(logits[bidx * vocabSize + i]);
if (logit > maxval)
{
maxval = logit;
}
}
float sum = 0.0f;
for (int i = 0; i < vocabSize; ++i)
{
sum += expf(static_cast<float>(logits[bidx * vocabSize + i]) - maxval);
}
for (int i = 0; i < vocabSize; ++i)
{
int idx = bidx * vocabSize + i;
float logit = static_cast<float>(logits[idx]) - maxval;
probs[idx] = static_cast<T>(expf(logit) / (sum + EPSILON));
}
}
}
struct TestSamplingParams
{
std::vector<runtime::SizeType32> topKs;
std::vector<float> topPs;
std::vector<float> temperatures;
std::vector<float> repetitionPenalties;
std::vector<float> presencePenalties;
std::vector<float> frequencyPenalties;
std::vector<int32_t> minLengths;
std::vector<float> decay;
std::vector<float> minTopP;
std::vector<int32_t> topPResetIds;
int32_t batchSize = 6;
int32_t beamWidth = 1;
bool useBias = false;
bool isExternalDraftTokensLayerTest = false;
bool useDraftLogits = false;
bool isAirTopPExternalDraftTokensLayer = false;
};
template <typename T>
class BaseSamplingLayerTest : public testing::Test
{
protected:
using TensorPtr = tensorrt_llm::runtime::ITensor::SharedPtr;
using BufferPtr = tensorrt_llm::runtime::IBuffer::SharedPtr;
static int32_t constexpr kDoubleBatchIdx = 2;
int32_t seed = 0;
int32_t mBatchSize = -1; // setup by runTest
int32_t mBeamWidth = 1;
static int32_t constexpr mBatchSizeBadPad = 512;
uint64_t mMaxSeed = 32;
int32_t const mVocabSize = 8;
int32_t const mVocabSizePadded = mVocabSize;
int32_t const mMaxInputLen = 0; // has no effect.
static int32_t constexpr mMaxOutputLen = 4;
int32_t const mMaxSeqLen = mMaxInputLen + mMaxOutputLen;
int32_t const mMaxTokensPerEngineStep = mMaxOutputLen;
int32_t mEndId = mVocabSize;
bool mComputeProbs = false;
TensorPtr mContextLengthDevice;
TensorPtr mSeqLengthsDevice;
TensorPtr mFinishedDevice;
TensorPtr mOutputIdsDevice;
TensorPtr mEndIdsDevice;
TensorPtr mIdsPtrHost;
TensorPtr mBatchSlots;
TensorPtr mEmbeddingBiasHost;
TensorPtr mEmbeddingBiasDevice;
TensorPtr mCumLogProbsDevice;
TensorPtr mOutputLogProbsDevice;
TensorPtr mCurandStatesDevice;
TensorPtr mPenaltyWorkspaceDevice;
// For Beam Search
TensorPtr mSrcCacheIndirection;
TensorPtr mTgtCacheIndirection;
TensorPtr mParentIds;
TensorPtr mOutputIdsCBA;
TensorPtr mLogProbsCBA;
TensorPtr mSequenceLengthsCBA;
TensorPtr mCumLogProbsCBA;
TensorPtr mNormedScoresCBA;
TensorPtr mNumBeamsCBA;
TensorPtr mMinNormedScoresCBA;
TensorPtr mBatchDones;
TensorPtr mOutputIdsPtr;
TensorPtr mParentIdsPtr;
std::shared_ptr<tensorrt_llm::runtime::CudaStream> mStream;
std::shared_ptr<tensorrt_llm::runtime::BufferManager> mBufferManager;
std::shared_ptr<tensorrt_llm::layers::BaseLayer> mSamplingLayer;
std::shared_ptr<tensorrt_llm::runtime::DecodingLayerWorkspace> mDecodingWorkspace;
std::vector<T> mTestLogitsInit;
int32_t maxBatchSize() const
{
return kDoubleBatchIdx * mBatchSize;
}
int32_t batchBeam() const
{
return mBatchSize * mBeamWidth;
}
void setup(uint64_t seed, TestSamplingParams const& params);
virtual void initLayer(TestSamplingParams const& params) = 0;
virtual std::shared_ptr<tensorrt_llm::layers::DecodingInputs> createInputTensors(int32_t step);
std::shared_ptr<tensorrt_llm::layers::BaseDecodingOutputs> createOutputTensors();
void batchCopy(int32_t step);
bool checkResult(int32_t const* outputIds, std::vector<std::set<int32_t>> const& expectedIds);
public:
void runTest(
std::vector<std::set<int32_t>> const& expectedOutputIds, TestSamplingParams const& params, int32_t endId = -1);
};
typedef testing::Types<float, half> FloatAndHalfTypes;
} // namespace tensorrt_llm::tests::layers::sampling