TensorRT-LLMs/cpp/tests/unit_tests/runtime/bufferManagerTest.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

284 lines
11 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaMemPool.h"
#include <memory>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
class BufferManagerTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init)
{
protected:
void SetUp() override
{
mDeviceCount = tc::getDeviceCount();
if (mDeviceCount > 0)
{
mBufferManager = std::make_unique<BufferManager>(std::make_unique<CudaStream>());
}
else
{
GTEST_SKIP() << "This test suite cannot run on systems with no devices.";
}
}
void TearDown() override {}
std::size_t memoryPoolReserved()
{
return mBufferManager->memoryPoolReserved();
}
std::size_t memoryPoolFree()
{
return mBufferManager->memoryPoolFree();
}
int mDeviceCount;
std::unique_ptr<BufferManager> mBufferManager = nullptr;
};
namespace
{
template <typename T>
T convertType(std::size_t val)
{
return static_cast<T>(val);
}
template <>
half convertType(std::size_t val)
{
return __float2half_rn(static_cast<float>(val));
}
template <typename T>
void testRoundTrip(BufferManager& manager)
{
auto constexpr size = 128;
std::vector<T> inputCpu(size);
for (std::size_t i = 0; i < size; ++i)
{
inputCpu[i] = convertType<T>(i);
}
auto inputGpu = manager.copyFrom(inputCpu, MemoryType::kGPU);
auto outputCpu = manager.copyFrom(*inputGpu, MemoryType::kPINNEDPOOL);
EXPECT_EQ(inputCpu.size(), outputCpu->getSize());
manager.getStream().synchronize();
auto outputCpuTyped = bufferCast<T>(*outputCpu);
for (size_t i = 0; i < inputCpu.size(); ++i)
{
EXPECT_EQ(inputCpu[i], outputCpuTyped[i]);
}
manager.setZero(*inputGpu);
manager.copy(*inputGpu, *outputCpu);
manager.getStream().synchronize();
for (size_t i = 0; i < inputCpu.size(); ++i)
{
EXPECT_EQ(0, static_cast<int32_t>(outputCpuTyped[i]));
}
}
} // namespace
TEST_F(BufferManagerTest, CreateCopyRoundTrip)
{
testRoundTrip<float>(*mBufferManager);
testRoundTrip<half>(*mBufferManager);
testRoundTrip<std::int8_t>(*mBufferManager);
testRoundTrip<std::uint8_t>(*mBufferManager);
testRoundTrip<std::int32_t>(*mBufferManager);
}
TEST_F(BufferManagerTest, Pointers)
{
// This could be any C++ type supported by TensorRT.
using cppBaseType = TokenIdType;
// We want to store pointers to the C++ base type in the buffer.
using cppPointerType = cppBaseType*;
// This represents the TensorRT type for the pointer.
auto constexpr trtPointerType = TRTDataType<cppPointerType>::value;
static_assert(std::is_same_v<decltype(trtPointerType), BufferDataType const>);
static_assert(trtPointerType.isPointer());
static_assert(trtPointerType.getDataType() == TRTDataType<cppBaseType>::value);
static_assert(static_cast<nvinfer1::DataType>(trtPointerType) == BufferDataType::kTrtPointerType);
static_assert(trtPointerType == BufferDataType::kTrtPointerType); // uses implicit type conversion
// The C++ type corresponding to the TensorRT type for storing pointers (int64_t)
using cppStorageType = DataTypeTraits<trtPointerType>::type;
static_assert(sizeof(cppStorageType) == sizeof(cppPointerType));
auto constexpr batchSize = 16;
// This buffer is on the CPU for convenient testing. In real code, this would be on the GPU.
auto pointers = mBufferManager->allocate(MemoryType::kCPU, batchSize, trtPointerType);
// We cast to the correct C++ pointer type checking that the underlying storage type is int64_t.
auto pointerBuf = bufferCast<cppPointerType>(*pointers);
// Create the GPU tensors.
std::vector<ITensor::UniquePtr> tensors(batchSize);
auto constexpr beamWidth = 4;
auto constexpr maxSeqLen = 10;
auto const shape = ITensor::makeShape({beamWidth, maxSeqLen});
for (auto i = 0u; i < batchSize; ++i)
{
tensors[i] = mBufferManager->allocate(MemoryType::kGPU, shape, TRTDataType<cppBaseType>::value);
pointerBuf[i] = bufferCast<cppBaseType>(*tensors[i]);
}
// Test that all pointers are valid
for (auto i = 0u; i < batchSize; ++i)
{
EXPECT_EQ(pointerBuf[i], tensors[i]->data());
}
}
class GpuAllocateAndFreeTest : public testing::TestWithParam<std::tuple<std::int32_t, std::int32_t>>
{
void SetUp() override
{
auto const deviceCount = tc::getDeviceCount();
if (deviceCount > 0)
{
mBufferManager = std::make_unique<BufferManager>(std::make_unique<CudaStream>());
}
else
{
GTEST_SKIP() << "This test suite cannot run on systems with no devices.";
}
}
protected:
std::unique_ptr<BufferManager> mBufferManager = nullptr;
};
TEST_P(GpuAllocateAndFreeTest, MemPoolAttributes)
{
auto const supportsMemPools = CudaMemPool::supportsMemoryPool(mBufferManager->getStream().getDevice());
if (!supportsMemPools)
{
GTEST_SKIP() << "Test not runnable when memory pools are not supported.";
}
auto const params = GetParam();
auto const initialAllocationSize = 1 << std::get<0>(params);
IBuffer::UniquePtr initialAllocation{};
initialAllocation = mBufferManager->allocate(MemoryType::kGPU, initialAllocationSize);
mBufferManager->getStream().synchronize();
EXPECT_EQ(initialAllocation->getSize(), initialAllocationSize)
<< "The initial memory allocation does not have the correct size.";
auto const reservedAfterInitial = mBufferManager->memoryPoolReserved();
ASSERT_GE(reservedAfterInitial, initialAllocationSize)
<< "The pool has less memory reserved than the initial allocation requires.";
auto const usedAfterInitial = mBufferManager->memoryPoolUsed();
auto const freeAfterInitial = mBufferManager->memoryPoolFree();
EXPECT_EQ(freeAfterInitial, reservedAfterInitial - usedAfterInitial)
<< "Relationship between free, reserved and used memory is incorrect.";
auto const additionalAllocationSize = 1 << std::get<1>(params);
auto const additionalMemoryRequired = additionalAllocationSize - freeAfterInitial;
IBuffer::UniquePtr additionalAllocation{};
additionalAllocation = mBufferManager->allocate(MemoryType::kGPU, additionalAllocationSize);
mBufferManager->getStream().synchronize();
EXPECT_EQ(additionalAllocation->getSize(), additionalAllocationSize)
<< "The additional memory allocation does not have the correct size.";
auto const reservedAfterAdditional = mBufferManager->memoryPoolReserved();
auto const usedAfterAdditional = mBufferManager->memoryPoolUsed();
auto const freeAfterAdditional = mBufferManager->memoryPoolFree();
EXPECT_EQ(freeAfterAdditional, reservedAfterAdditional - usedAfterAdditional)
<< "Relationship between free, reserved and used memory is incorrect.";
EXPECT_GE(reservedAfterAdditional, reservedAfterInitial + additionalMemoryRequired)
<< "The pool does not have enough reserved memory to contain the initial and the additional allocation.";
EXPECT_GE(usedAfterAdditional, usedAfterInitial + additionalAllocationSize)
<< "The used memory in the pool is not sufficient to contain both the initial and additional allocation";
additionalAllocation->release();
mBufferManager->getStream().synchronize();
auto const reservedAfterAdditionalRelease = mBufferManager->memoryPoolReserved();
auto const usedAfterAdditionalRelease = mBufferManager->memoryPoolUsed();
auto const freeAfterAdditionalRelease = mBufferManager->memoryPoolFree();
EXPECT_EQ(freeAfterAdditionalRelease, reservedAfterAdditionalRelease - usedAfterAdditionalRelease)
<< "Relationship between free, reserved and used memory is incorrect.";
EXPECT_EQ(usedAfterAdditionalRelease, usedAfterInitial)
<< "Releasing the additional allocation did not bring us back to the initial memory usage in the pool";
EXPECT_LE(reservedAfterAdditionalRelease, reservedAfterAdditional)
<< "Freeing memory resulted in an increased pool reservation";
mBufferManager->memoryPoolTrimTo(0);
auto const reservedAfterTrim = mBufferManager->memoryPoolReserved();
auto const usedAfterTrim = mBufferManager->memoryPoolUsed();
auto const freeAfterTrim = mBufferManager->memoryPoolFree();
EXPECT_EQ(freeAfterTrim, reservedAfterTrim - usedAfterTrim)
<< "Relationship between free, reserved and used memory is incorrect.";
EXPECT_LE(reservedAfterTrim, reservedAfterAdditional)
<< "Trimming the memory pool resulted in more memory reserved. Expected less.";
}
auto const powers = testing::Range(0, 30, 5);
auto const powersCombinations = testing::Combine(powers, powers);
INSTANTIATE_TEST_SUITE_P(GpuAllocations, GpuAllocateAndFreeTest, powersCombinations);
TEST_F(BufferManagerTest, MemPoolAttributes)
{
auto const supportsMemPools = CudaMemPool::supportsMemoryPool(mBufferManager->getStream().getDevice());
if (!supportsMemPools)
{
GTEST_SKIP() << "Test not runnable when memory pools are not supported.";
}
mBufferManager->memoryPoolTrimTo(0);
auto const reserved = mBufferManager->memoryPoolReserved();
auto const used = mBufferManager->memoryPoolUsed();
auto const free = mBufferManager->memoryPoolFree();
EXPECT_EQ(free, reserved - used);
auto constexpr kBytesToReserve = 1 << 20;
{
auto const mem = mBufferManager->allocate(MemoryType::kGPU, kBytesToReserve);
EXPECT_EQ(mem->getSize(), kBytesToReserve);
EXPECT_GE(mBufferManager->memoryPoolReserved(), reserved + kBytesToReserve);
EXPECT_GE(mBufferManager->memoryPoolUsed(), used + kBytesToReserve);
}
EXPECT_GE(mBufferManager->memoryPoolFree(), free + kBytesToReserve);
mBufferManager->memoryPoolTrimTo(0);
EXPECT_LE(mBufferManager->memoryPoolReserved(), reserved);
EXPECT_LE(mBufferManager->memoryPoolFree(), free);
}
TEST_F(BufferManagerTest, TrimPoolOnDestruction)
{
auto const supportsMemPools = CudaMemPool::supportsMemoryPool(mBufferManager->getStream().getDevice());
if (!supportsMemPools)
{
GTEST_SKIP() << "Test not runnable when memory pools are not supported.";
}
mBufferManager->memoryPoolTrimTo(0);
mBufferManager = std::make_unique<BufferManager>(std::make_unique<CudaStream>(), true);
auto const reserved = mBufferManager->memoryPoolReserved();
auto const free = mBufferManager->memoryPoolFree();
auto constexpr kBytesToReserve = 1 << 20;
{
auto const mem = mBufferManager->allocate(MemoryType::kGPU, kBytesToReserve);
}
EXPECT_GE(mBufferManager->memoryPoolFree(), free + kBytesToReserve);
mBufferManager = std::make_unique<BufferManager>(std::make_unique<CudaStream>());
EXPECT_LE(memoryPoolReserved(), reserved);
EXPECT_LE(memoryPoolFree(), free);
}