TensorRT-LLMs/tensorrt_llm/models/opt/model.py
Kaiyu Xie b2fd493c16
Update TensorRT-LLM (#349)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-10 22:30:31 +08:00

349 lines
14 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorrt as trt
from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import Tensor, gather_last_token_logits
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
ColumnLinear, KeyValueCacheParams, LayerNorm,
PositionEmbeddingType)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ..generation_mixin import GenerationMixin
from ..gpt.model import GPTEmbedding
class OPTDecoderLayer(Module):
def __init__(self,
hidden_size,
num_attention_heads,
max_position_embeddings,
dtype=None,
hidden_act='relu',
pre_norm=False,
tp_group=None,
tp_size=1):
super().__init__()
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.attention = Attention(
hidden_size,
num_attention_heads,
max_position_embeddings=max_position_embeddings,
attention_mask_type=AttentionMaskType.causal,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
self.mlp = MLP(hidden_size=hidden_size,
ffn_hidden_size=hidden_size * 4,
hidden_act=hidden_act,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
self.pre_norm = pre_norm
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None):
residual = hidden_states
attention_input = hidden_states
if self.pre_norm:
attention_input = self.input_layernorm(hidden_states)
# At this point the hidden_states object must be a Tensor.
assert isinstance(attention_input, Tensor)
attention_output = self.attention(attention_input,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
if not self.pre_norm:
hidden_states = self.input_layernorm(hidden_states)
residual = hidden_states
if self.pre_norm:
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if not self.pre_norm:
hidden_states = self.post_layernorm(hidden_states)
if use_cache:
return (hidden_states, presents)
return hidden_states
class OPTModel(Module):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype=None,
mapping=Mapping(),
pre_norm=True,
do_layer_norm_before=True,
use_prompt_tuning=False,
use_parallel_embedding=False,
embedding_sharding_dim=0):
super().__init__()
self.do_layer_norm_before = do_layer_norm_before
self.embedding = GPTEmbedding(
vocab_size,
hidden_size,
max_position_embeddings,
position_embedding_type=PositionEmbeddingType.learned_absolute,
dtype=dtype,
use_prompt_tuning=use_prompt_tuning,
tensor_parallel=mapping.tp_size if use_parallel_embedding else 1,
tensor_parallel_group=mapping.tp_group
if use_parallel_embedding else None,
sharding_dim=embedding_sharding_dim,
tp_rank=mapping.tp_rank)
self.layers = ModuleList([
OPTDecoderLayer(hidden_size=hidden_size,
num_attention_heads=num_heads,
max_position_embeddings=max_position_embeddings,
dtype=dtype,
hidden_act=hidden_act,
pre_norm=pre_norm,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size) for _ in range(num_layers)
])
if self.do_layer_norm_before:
self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None):
hidden_states = self.embedding(input_ids, position_ids,
prompt_embedding_table, prompt_tasks,
prompt_vocab_size)
kv_cache_params.fill_none_tensor_list(len(self.layers))
if use_cache:
presents = []
for layer, past, max_kv_cache_length in zip(
self.layers, kv_cache_params.past_key_value,
kv_cache_params.host_max_kv_cache_lengths):
hidden_states = layer(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_kv_cache_lengths=max_kv_cache_length,
cache_indirection=kv_cache_params.cache_indirection),
attention_params=attention_params)
if use_cache:
presents.append(hidden_states[1])
hidden_states = hidden_states[0]
if self.do_layer_norm_before:
hidden_states = self.ln_f(hidden_states)
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class OPTLMHeadModel(OPTModel, GenerationMixin):
def __init__(self,
num_layers,
num_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype,
mapping=Mapping(),
pre_norm=True,
do_layer_norm_before=True,
use_prompt_tuning=False,
use_parallel_embedding=False,
embedding_sharding_dim=0,
share_embedding_table=False):
if share_embedding_table and mapping.tp_size > 1:
if (not use_parallel_embedding) or (use_parallel_embedding and
embedding_sharding_dim == 1):
raise NotImplementedError(
'For multiple-processes cases, sharing the embedding table must set use_parallel_embedding=True and embedding_sharding_dim = 0'
)
super().__init__(num_layers, num_heads, hidden_size, vocab_size,
hidden_act, max_position_embeddings, dtype, mapping,
pre_norm, do_layer_norm_before, use_prompt_tuning,
use_parallel_embedding, embedding_sharding_dim)
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
if isinstance(dtype, str):
self._kv_dtype = str_dtype_to_trt(dtype)
else:
assert isinstance(dtype, trt.DataType)
self._kv_dtype = dtype
self._dtype = self._kv_dtype
self._num_layers = num_layers
self._num_heads = num_heads
self._hidden_size = hidden_size
self._vocab_size = vocab_size
self._tp_size = mapping.tp_size
self._use_prompt_tuning = use_prompt_tuning
share_weight = None
if share_embedding_table:
share_weight = self.embedding.vocab_embedding.weight
self.lm_head = ColumnLinear(hidden_size,
vocab_size_padded,
bias=False,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True,
share_weight=share_weight)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
last_token_ids=None,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None):
hidden_states = super().forward(input_ids, position_ids, use_cache,
attention_mask, kv_cache_params,
attention_params,
prompt_embedding_table, prompt_tasks,
prompt_vocab_size)
if use_cache:
hidden_states, presents = hidden_states
hidden_states = gather_last_token_logits(
hidden_states, last_token_ids,
default_net().plugin_config.remove_input_padding)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output('logits', self._kv_dtype)
if use_cache and default_net().plugin_config.paged_kv_cache == False:
for i, present in enumerate(presents):
present.mark_output(f'present_key_value_{i}', self._kv_dtype)
return (lm_logits, presents)
return lm_logits
def prepare_inputs(self,
max_batch_size,
max_input_len,
max_new_tokens,
use_cache,
max_beam_width,
prompt_embedding_table_size: int = 0):
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
# Prepare inputs
head_size = self._hidden_size // self._num_heads
num_heads = self._num_heads // self._tp_size
remove_input_padding = default_net().plugin_config.remove_input_padding
use_gpt_attention_plugin = default_net(
).plugin_config.gpt_attention_plugin
use_gemm_plugin = default_net().plugin_config.gemm_plugin
paged_kv_cache = default_net().plugin_config.paged_kv_cache
tokens_per_block = default_net().plugin_config.tokens_per_block
model_inputs = self.prepare_basic_inputs(
max_batch_size,
max_beam_width,
max_input_len,
max_new_tokens,
num_heads,
head_size,
self._num_layers,
self._kv_dtype,
remove_input_padding,
use_gpt_attention_plugin,
num_heads=num_heads,
dtype=self._dtype,
use_gemm_plugin=use_gemm_plugin,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
prompt_embedding_table_size=prompt_embedding_table_size)
return (model_inputs['input_ids'], model_inputs['position_ids'], True,
model_inputs['last_token_ids'], model_inputs['attention_mask'],
KeyValueCacheParams(
past_key_value=model_inputs['past_key_value'],
host_past_key_value_lengths=model_inputs[
'host_past_key_value_lengths'],
host_max_kv_cache_lengths=model_inputs[
'host_max_kv_cache_lengths'],
cache_indirection=model_inputs['cache_indirection'],
),
AttentionParams(
sequence_length=model_inputs['sequence_length'],
context_lengths=model_inputs['context_lengths'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types']),
model_inputs['prompt_embedding_table'], model_inputs['tasks'],
model_inputs['prompt_vocab_size'])