mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-10 13:03:34 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
161 lines
6.0 KiB
Python
161 lines
6.0 KiB
Python
import json as _json
|
|
import pathlib as _pl
|
|
import time as _time
|
|
import typing as _tp
|
|
|
|
import numpy as _np
|
|
import torch as _tor
|
|
from binding_test_utils import *
|
|
|
|
import tensorrt_llm.bindings as _tb
|
|
|
|
|
|
@pytest.mark.parametrize("variant, results_file", [
|
|
("fp16-plugin-packed-paged",
|
|
"output_tokens_fp16_plugin_packed_paged_tp1_pp1.npy"),
|
|
])
|
|
def test_gpt_manager(variant, results_file, llm_root: _pl.Path,
|
|
resource_path: _pl.Path, engine_path: _pl.Path,
|
|
data_path: _pl.Path, llm_model_root):
|
|
model_dir = "gpt2"
|
|
tp_size = 1
|
|
pp_size = 1
|
|
beam_width = 1
|
|
max_batch_size = 8
|
|
end_id = 50256
|
|
pad_id = 50256
|
|
|
|
# load input data
|
|
input_path = data_path / "input_tokens.npy"
|
|
assert input_path.is_file()
|
|
given_input = _np.load(input_path).astype("int32")
|
|
input_shape = given_input.shape
|
|
assert len(input_shape) == 2
|
|
num_given_inputs = input_shape[0]
|
|
assert max_batch_size <= num_given_inputs
|
|
max_input_length = input_shape[1]
|
|
given_input_lengths = sequence_lengths(given_input, pad_id)
|
|
assert _np.all(given_input_lengths <= max_input_length)
|
|
|
|
# load expected output data
|
|
results_path = data_path / model_dir / (
|
|
"sampling"
|
|
if beam_width == 1 else f"beam_search_{beam_width}") / results_file
|
|
|
|
if not results_path.exists():
|
|
model_cache_arg = ["--model_cache",
|
|
str(llm_model_root)
|
|
] if llm_model_root is not None else []
|
|
prepare_model_tests(llm_root, resource_path, "gpt", model_cache_arg)
|
|
|
|
assert results_path.is_file()
|
|
expected_output = _np.load(results_path)
|
|
output_shape = expected_output.shape
|
|
assert len(output_shape) == 2
|
|
assert num_given_inputs * beam_width == output_shape[0]
|
|
max_seq_length = output_shape[1]
|
|
assert max_input_length <= max_seq_length
|
|
expected_output_lengths = sequence_lengths(expected_output, end_id)
|
|
assert _np.all(expected_output_lengths <= max_seq_length)
|
|
|
|
gpu_size_path = f"tp{tp_size}-pp{pp_size}-gpu"
|
|
model_path = engine_path / model_dir / variant / gpu_size_path
|
|
assert model_path.is_dir()
|
|
config_path = model_path / "config.json"
|
|
config_json = _tb.GptJsonConfig.parse_file(config_path)
|
|
assert config_json.tensor_parallelism == tp_size
|
|
assert config_json.pipeline_parallelism == pp_size
|
|
world_config = _tb.WorldConfig.mpi(tensor_parallelism=tp_size,
|
|
pipeline_parallelism=pp_size)
|
|
engine_filename = config_json.engine_filename(world_config)
|
|
assert (model_path / engine_filename).is_file()
|
|
|
|
config_json.model_config
|
|
|
|
max_new_tokens = max_seq_length - max_input_length
|
|
sampling_config = _tb.SamplingConfig(beam_width)
|
|
sampling_config.temperature = [1.0]
|
|
sampling_config.min_length = [1]
|
|
sampling_config.random_seed = [42]
|
|
sampling_config.top_k = [0]
|
|
sampling_config.top_p = [0.0]
|
|
|
|
inference_request_list = []
|
|
remaining_requests = len(given_input)
|
|
for i, (req, length) in enumerate(zip(given_input, given_input_lengths)):
|
|
inference_request_list.append(
|
|
_tb.InferenceRequest(
|
|
{
|
|
"input_ids":
|
|
_tor.tensor([req[:length].tolist()], dtype=_tor.int32),
|
|
"input_lengths":
|
|
_tor.tensor([[length]], dtype=_tor.int32),
|
|
"request_output_len":
|
|
_tor.tensor([[length + max_new_tokens]], dtype=_tor.int32),
|
|
"end_id":
|
|
_tor.tensor([end_id], dtype=_tor.int32),
|
|
"pad_id":
|
|
_tor.tensor([pad_id], dtype=_tor.int32),
|
|
"beam_width":
|
|
_tor.tensor([beam_width], dtype=_tor.int32),
|
|
"temperature":
|
|
_tor.tensor([1.0], dtype=_tor.float32),
|
|
"min_length":
|
|
_tor.tensor([1], dtype=_tor.int32),
|
|
"random_seed":
|
|
_tor.tensor([42], dtype=_tor.int64),
|
|
"runtime_top_k":
|
|
_tor.tensor([0], dtype=_tor.int32),
|
|
"runtime_top_p":
|
|
_tor.tensor([0], dtype=_tor.float32),
|
|
}, i))
|
|
|
|
def fetch_requests(max_num_sequences: int):
|
|
nonlocal inference_request_list
|
|
fetched = []
|
|
for _ in range(max_num_sequences):
|
|
try:
|
|
fetched.append(inference_request_list.pop())
|
|
except IndexError:
|
|
break
|
|
return fetched
|
|
|
|
def response_cb(req_id: int, tensors: _tp.List[_tb.NamedTensor],
|
|
is_ok: bool, err_msg: str):
|
|
nonlocal remaining_requests
|
|
|
|
assert is_ok
|
|
assert not err_msg
|
|
tensor_dict = {item.name: item.tensor for item in tensors}
|
|
|
|
batch_idx = req_id
|
|
observed_output = tensor_dict["output_ids"]
|
|
|
|
expected_length = expected_output_lengths[batch_idx]
|
|
observed_length = tensor_dict["sequence_length"].item(
|
|
) - given_input_lengths[batch_idx]
|
|
assert expected_length == observed_length, (batch_idx, expected_length,
|
|
observed_length)
|
|
expected = expected_output[batch_idx, :expected_length]
|
|
observed = observed_output[0, 0, :expected_length].numpy()
|
|
unmatched = expected != observed
|
|
if _np.any(unmatched):
|
|
assert False, (batch_idx, _np.where(unmatched),
|
|
_np.column_stack((expected, observed))[unmatched])
|
|
|
|
remaining_requests -= 1
|
|
|
|
def should_stop():
|
|
return set()
|
|
|
|
def stats_cb(stats_json: str):
|
|
assert _json.loads(stats_json)
|
|
|
|
opt_params = _tb.TrtGptModelOptionalParams()
|
|
|
|
with _tb.GptManager(model_path, _tb.TrtGptModelType.InflightBatching, 1,
|
|
_tb.SchedulerPolicy.MAX_UTILIZATION, fetch_requests,
|
|
response_cb, should_stop, stats_cb, opt_params, 10000):
|
|
while remaining_requests > 0:
|
|
_time.sleep(0.1)
|