mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
630 lines
26 KiB
Python
Executable File
630 lines
26 KiB
Python
Executable File
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import json
|
|
import math
|
|
import re
|
|
import time
|
|
from collections import OrderedDict
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from datasets import load_dataset
|
|
from tokenizer import get_tokenizer
|
|
from torch.utils.data import DataLoader
|
|
from whisper.normalizers import EnglishTextNormalizer
|
|
from whisper_utils import (log_mel_spectrogram, store_transcripts,
|
|
write_error_stats)
|
|
|
|
import tensorrt_llm
|
|
import tensorrt_llm.logger as logger
|
|
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
|
|
trt_dtype_to_torch)
|
|
from tensorrt_llm.bindings import GptJsonConfig, KVCacheType
|
|
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelConfig, SamplingConfig
|
|
from tensorrt_llm.runtime.session import Session, TensorInfo
|
|
|
|
if PYTHON_BINDINGS:
|
|
from tensorrt_llm.runtime import ModelRunnerCpp
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--log_level', type=str, default='warning')
|
|
parser.add_argument('--engine_dir', type=str, default='whisper_large_v3')
|
|
parser.add_argument('--results_dir', type=str, default='tmp')
|
|
parser.add_argument('--assets_dir', type=str, default='./assets')
|
|
parser.add_argument('--input_file', type=str, default=None)
|
|
parser.add_argument('--dataset',
|
|
type=str,
|
|
default="hf-internal-testing/librispeech_asr_dummy")
|
|
parser.add_argument(
|
|
'--dataset_name',
|
|
type=str,
|
|
default="clean",
|
|
help=
|
|
"dataset configuration name in the dataset, see https://huggingface.co/docs/datasets/v3.0.0/en/package_reference/loading_methods#datasets.load_dataset"
|
|
)
|
|
parser.add_argument('--dataset_split', type=str, default="validation")
|
|
parser.add_argument('--name',
|
|
type=str,
|
|
default="librispeech_dummy_benchmark")
|
|
parser.add_argument('--batch_size', type=int, default=4)
|
|
parser.add_argument('--num_beams', type=int, default=1)
|
|
parser.add_argument('--debug', action='store_true')
|
|
parser.add_argument('--enable_warmup', action='store_true')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float16'])
|
|
parser.add_argument('--accuracy_check',
|
|
action='store_true',
|
|
help="only for CI test")
|
|
parser.add_argument('--use_py_session',
|
|
action='store_true',
|
|
help="use python session or cpp session")
|
|
parser.add_argument(
|
|
"--compute_cer",
|
|
action="store_true",
|
|
default=False,
|
|
help="""True to compute character error rate (CER), e.g., for Chinese.
|
|
False to compute word error rate (WER), e.g., for English words.
|
|
""",
|
|
)
|
|
parser.add_argument(
|
|
"--text_prefix",
|
|
default="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
|
|
help="""Text prefix to be used for decoding. Default is for English ASR.
|
|
""",
|
|
)
|
|
parser.add_argument(
|
|
"--padding_strategy",
|
|
default="max",
|
|
help=
|
|
"""1. max: pad to the 30s, using the option if the model is trained with max padding e.g. openai official models,
|
|
2. longest: pad to the longest sequence in the batch,
|
|
3. nopad: no padding, only works with cpp session,
|
|
""",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def remove_tensor_padding(input_tensor,
|
|
input_tensor_lengths=None,
|
|
pad_value=None):
|
|
if pad_value:
|
|
assert input_tensor_lengths is None, "input_tensor_lengths should be None when pad_value is provided"
|
|
# Text tensor case: batch, seq_len
|
|
assert torch.all(
|
|
input_tensor[:, 0] !=
|
|
pad_value), "First token in each sequence should not be pad_value"
|
|
assert input_tensor_lengths is None
|
|
|
|
# Create a mask for all non-pad tokens
|
|
mask = input_tensor != pad_value
|
|
|
|
# Apply the mask to input_tensor to remove pad tokens
|
|
output_tensor = input_tensor[mask].view(1, -1)
|
|
|
|
else:
|
|
# Audio tensor case: batch, seq_len, feature_len
|
|
# position_ids case: batch, seq_len
|
|
assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"
|
|
|
|
# Initialize a list to collect valid sequences
|
|
valid_sequences = []
|
|
|
|
for i in range(input_tensor.shape[0]):
|
|
valid_length = input_tensor_lengths[i]
|
|
valid_sequences.append(input_tensor[i, :valid_length])
|
|
|
|
# Concatenate all valid sequences along the batch dimension
|
|
output_tensor = torch.cat(valid_sequences, dim=0)
|
|
return output_tensor
|
|
|
|
|
|
def read_config(component, engine_dir):
|
|
config_path = engine_dir / component / 'config.json'
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
model_config = OrderedDict()
|
|
model_config.update(config['pretrained_config'])
|
|
model_config.update(config['build_config'])
|
|
return model_config
|
|
|
|
|
|
class WhisperEncoding:
|
|
|
|
def __init__(self, engine_dir):
|
|
self.session = self.get_session(engine_dir)
|
|
config = read_config('encoder', engine_dir)
|
|
self.n_mels = config['n_mels']
|
|
self.dtype = config['dtype']
|
|
self.num_languages = config['num_languages']
|
|
self.encoder_config = config
|
|
|
|
def get_session(self, engine_dir):
|
|
serialize_path = engine_dir / 'encoder' / 'rank0.engine'
|
|
with open(serialize_path, 'rb') as f:
|
|
session = Session.from_serialized_engine(f.read())
|
|
return session
|
|
|
|
def get_audio_features(self,
|
|
mel,
|
|
mel_input_lengths,
|
|
encoder_downsampling_factor=2):
|
|
if isinstance(mel, list):
|
|
longest_mel = max([f.shape[-1] for f in mel])
|
|
mel = [
|
|
torch.nn.functional.pad(f, (0, longest_mel - f.shape[-1]),
|
|
mode='constant') for f in mel
|
|
]
|
|
mel = torch.cat(mel, dim=0).type(
|
|
str_dtype_to_torch("float16")).contiguous()
|
|
bsz, seq_len = mel.shape[0], mel.shape[2]
|
|
position_ids = torch.arange(
|
|
math.ceil(seq_len / encoder_downsampling_factor),
|
|
dtype=torch.int32,
|
|
device=mel.device).expand(bsz, -1).contiguous()
|
|
if self.encoder_config['plugin_config']['remove_input_padding']:
|
|
# mel B,D,T -> B,T,D -> BxT, D
|
|
mel = mel.transpose(1, 2)
|
|
mel = remove_tensor_padding(mel, mel_input_lengths)
|
|
position_ids = remove_tensor_padding(
|
|
position_ids, mel_input_lengths // encoder_downsampling_factor)
|
|
inputs = OrderedDict()
|
|
inputs['input_features'] = mel
|
|
inputs['input_lengths'] = mel_input_lengths
|
|
inputs['position_ids'] = position_ids
|
|
|
|
output_list = [
|
|
TensorInfo('input_features', str_dtype_to_trt(self.dtype),
|
|
mel.shape),
|
|
TensorInfo('input_lengths', str_dtype_to_trt('int32'),
|
|
mel_input_lengths.shape),
|
|
TensorInfo('position_ids', str_dtype_to_trt('int32'),
|
|
inputs['position_ids'].shape)
|
|
]
|
|
|
|
output_info = (self.session).infer_shapes(output_list)
|
|
|
|
logger.debug(f'output info {output_info}')
|
|
outputs = {
|
|
t.name:
|
|
torch.empty(tuple(t.shape),
|
|
dtype=trt_dtype_to_torch(t.dtype),
|
|
device='cuda')
|
|
for t in output_info
|
|
}
|
|
stream = torch.cuda.current_stream()
|
|
ok = self.session.run(inputs=inputs,
|
|
outputs=outputs,
|
|
stream=stream.cuda_stream)
|
|
assert ok, 'Engine execution failed'
|
|
stream.synchronize()
|
|
encoder_output = outputs['encoder_output']
|
|
encoder_output_lengths = mel_input_lengths // encoder_downsampling_factor
|
|
return encoder_output, encoder_output_lengths
|
|
|
|
|
|
class WhisperDecoding:
|
|
|
|
def __init__(self, engine_dir, runtime_mapping, debug_mode=False):
|
|
|
|
self.decoder_config = read_config('decoder', engine_dir)
|
|
self.decoder_generation_session = self.get_session(
|
|
engine_dir, runtime_mapping, debug_mode)
|
|
|
|
def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
|
|
serialize_path = engine_dir / 'decoder' / 'rank0.engine'
|
|
with open(serialize_path, "rb") as f:
|
|
decoder_engine_buffer = f.read()
|
|
|
|
decoder_model_config = ModelConfig(
|
|
max_batch_size=self.decoder_config['max_batch_size'],
|
|
max_beam_width=self.decoder_config['max_beam_width'],
|
|
num_heads=self.decoder_config['num_attention_heads'],
|
|
num_kv_heads=self.decoder_config['num_attention_heads'],
|
|
hidden_size=self.decoder_config['hidden_size'],
|
|
vocab_size=self.decoder_config['vocab_size'],
|
|
cross_attention=True,
|
|
num_layers=self.decoder_config['num_hidden_layers'],
|
|
gpt_attention_plugin=self.decoder_config['plugin_config']
|
|
['gpt_attention_plugin'],
|
|
remove_input_padding=self.decoder_config['plugin_config']
|
|
['remove_input_padding'],
|
|
kv_cache_type=KVCacheType.PAGED
|
|
if self.decoder_config['plugin_config']['paged_kv_cache'] == True
|
|
else KVCacheType.CONTINUOUS,
|
|
has_position_embedding=self.
|
|
decoder_config['has_position_embedding'],
|
|
dtype=self.decoder_config['dtype'],
|
|
has_token_type_embedding=False,
|
|
)
|
|
decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
|
|
decoder_model_config,
|
|
decoder_engine_buffer,
|
|
runtime_mapping,
|
|
debug_mode=debug_mode)
|
|
|
|
return decoder_generation_session
|
|
|
|
def generate(self,
|
|
decoder_input_ids,
|
|
encoder_outputs,
|
|
encoder_max_input_length,
|
|
encoder_input_lengths,
|
|
eot_id,
|
|
max_new_tokens=40,
|
|
num_beams=1):
|
|
batch_size = decoder_input_ids.shape[0]
|
|
decoder_input_lengths = torch.tensor([
|
|
decoder_input_ids.shape[-1]
|
|
for _ in range(decoder_input_ids.shape[0])
|
|
],
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
decoder_max_input_length = torch.max(decoder_input_lengths).item()
|
|
|
|
cross_attention_mask = torch.ones([
|
|
batch_size, decoder_max_input_length + max_new_tokens,
|
|
encoder_max_input_length
|
|
]).int().cuda()
|
|
# generation config
|
|
sampling_config = SamplingConfig(end_id=eot_id,
|
|
pad_id=eot_id,
|
|
num_beams=num_beams)
|
|
self.decoder_generation_session.setup(
|
|
decoder_input_lengths.size(0),
|
|
decoder_max_input_length,
|
|
max_new_tokens,
|
|
beam_width=num_beams,
|
|
encoder_max_input_length=encoder_max_input_length)
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
|
|
if self.decoder_config['plugin_config']['remove_input_padding']:
|
|
# 50256 is the index of <pad> for all whisper models' decoder
|
|
WHISPER_PAD_TOKEN_ID = 50256
|
|
decoder_input_ids = remove_tensor_padding(
|
|
decoder_input_ids, pad_value=WHISPER_PAD_TOKEN_ID)
|
|
if encoder_outputs.dim() == 3:
|
|
encoder_output_lens = torch.full((encoder_outputs.shape[0], ),
|
|
encoder_outputs.shape[1],
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
|
|
encoder_outputs = remove_tensor_padding(encoder_outputs,
|
|
encoder_output_lens)
|
|
output_ids = self.decoder_generation_session.decode(
|
|
decoder_input_ids,
|
|
decoder_input_lengths,
|
|
sampling_config,
|
|
encoder_output=encoder_outputs,
|
|
encoder_input_lengths=encoder_input_lengths,
|
|
cross_attention_mask=cross_attention_mask,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
# get the list of int from output_ids tensor
|
|
output_ids = output_ids.cpu().numpy().tolist()
|
|
return output_ids
|
|
|
|
|
|
class WhisperTRTLLM(object):
|
|
|
|
def __init__(self,
|
|
engine_dir,
|
|
debug_mode=False,
|
|
assets_dir=None,
|
|
batch_size=64,
|
|
use_py_session=False,
|
|
num_beams=1):
|
|
world_size = 1
|
|
runtime_rank = tensorrt_llm.mpi_rank()
|
|
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
|
|
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
|
|
engine_dir = Path(engine_dir)
|
|
encoder_config = read_config('encoder', engine_dir)
|
|
decoder_config = read_config('decoder', engine_dir)
|
|
self.n_mels = encoder_config['n_mels']
|
|
self.num_languages = encoder_config['num_languages']
|
|
is_multilingual = (decoder_config['vocab_size'] >= 51865)
|
|
if is_multilingual:
|
|
tokenizer_name = "multilingual"
|
|
assert (Path(assets_dir) / "multilingual.tiktoken").exists(
|
|
), "multilingual.tiktoken file is not existed in assets_dir"
|
|
else:
|
|
tokenizer_name = "gpt2"
|
|
assert (Path(assets_dir) / "gpt2.tiktoken").exists(
|
|
), "gpt2.tiktoken file is not existed in assets_dir"
|
|
self.tokenizer = get_tokenizer(name=tokenizer_name,
|
|
num_languages=self.num_languages,
|
|
tokenizer_dir=assets_dir)
|
|
self.eot_id = self.tokenizer.encode(
|
|
"<|endoftext|>",
|
|
allowed_special=self.tokenizer.special_tokens_set)[0]
|
|
if use_py_session:
|
|
self.encoder = WhisperEncoding(engine_dir)
|
|
self.decoder = WhisperDecoding(engine_dir,
|
|
runtime_mapping,
|
|
debug_mode=debug_mode)
|
|
else:
|
|
json_config = GptJsonConfig.parse_file(engine_dir / 'decoder' /
|
|
'config.json')
|
|
assert json_config.model_config.supports_inflight_batching
|
|
runner_kwargs = dict(engine_dir=engine_dir,
|
|
is_enc_dec=True,
|
|
max_batch_size=batch_size,
|
|
max_input_len=3000,
|
|
max_output_len=96,
|
|
max_beam_width=num_beams,
|
|
debug_mode=debug_mode,
|
|
kv_cache_free_gpu_memory_fraction=0.9,
|
|
cross_kv_cache_fraction=0.5)
|
|
self.model_runner_cpp = ModelRunnerCpp.from_dir(**runner_kwargs)
|
|
self.use_py_session = use_py_session
|
|
|
|
def process_batch(
|
|
self,
|
|
mel,
|
|
mel_input_lengths,
|
|
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
|
|
num_beams=1,
|
|
max_new_tokens=96):
|
|
prompt_id = self.tokenizer.encode(
|
|
text_prefix, allowed_special=self.tokenizer.special_tokens_set)
|
|
prompt_id = torch.tensor(prompt_id)
|
|
batch_size = len(mel)
|
|
decoder_input_ids = prompt_id.repeat(batch_size, 1)
|
|
if self.use_py_session:
|
|
encoder_output, encoder_output_lengths = self.encoder.get_audio_features(
|
|
mel, mel_input_lengths)
|
|
encoder_max_input_length = torch.max(encoder_output_lengths).item()
|
|
output_ids = self.decoder.generate(decoder_input_ids,
|
|
encoder_output,
|
|
encoder_max_input_length,
|
|
encoder_output_lengths,
|
|
self.eot_id,
|
|
max_new_tokens=max_new_tokens,
|
|
num_beams=num_beams)
|
|
else:
|
|
with torch.no_grad():
|
|
if isinstance(mel, list):
|
|
mel = [
|
|
m.transpose(1, 2).type(
|
|
str_dtype_to_torch("float16")).squeeze(0)
|
|
for m in mel
|
|
]
|
|
else:
|
|
mel = mel.transpose(1, 2)
|
|
outputs = self.model_runner_cpp.generate(
|
|
batch_input_ids=decoder_input_ids,
|
|
encoder_input_features=mel,
|
|
encoder_output_lengths=mel_input_lengths // 2,
|
|
max_new_tokens=max_new_tokens,
|
|
end_id=self.eot_id,
|
|
pad_id=self.eot_id,
|
|
num_beams=num_beams,
|
|
output_sequence_lengths=True,
|
|
return_dict=True)
|
|
torch.cuda.synchronize()
|
|
output_ids = outputs['output_ids'].cpu().numpy().tolist()
|
|
texts = []
|
|
for i in range(len(output_ids)):
|
|
text = self.tokenizer.decode(output_ids[i][0]).strip()
|
|
texts.append(text)
|
|
return texts
|
|
|
|
|
|
def decode_wav_file(
|
|
input_file_path,
|
|
model,
|
|
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
|
|
dtype='float16',
|
|
batch_size=1,
|
|
num_beams=1,
|
|
normalizer=None,
|
|
mel_filters_dir=None,
|
|
padding_strategy="longest"):
|
|
mel, total_duration = log_mel_spectrogram(input_file_path,
|
|
model.n_mels,
|
|
device='cuda',
|
|
return_duration=True,
|
|
mel_filters_dir=mel_filters_dir)
|
|
mel = mel.type(str_dtype_to_torch(dtype))
|
|
mel = mel.unsqueeze(0)
|
|
# repeat the mel spectrogram to match the batch size
|
|
mel = mel.repeat(batch_size, 1, 1)
|
|
if padding_strategy == "longest":
|
|
pass
|
|
else:
|
|
mel = torch.nn.functional.pad(mel, (0, 3000 - mel.shape[2]))
|
|
features_input_lengths = torch.full((mel.shape[0], ),
|
|
mel.shape[2],
|
|
dtype=torch.int32,
|
|
device=mel.device)
|
|
predictions = model.process_batch(mel, features_input_lengths, text_prefix,
|
|
num_beams)
|
|
prediction = predictions[0]
|
|
|
|
# remove all special tokens in the prediction
|
|
prediction = re.sub(r'<\|.*?\|>', '', prediction)
|
|
if normalizer:
|
|
prediction = normalizer(prediction)
|
|
print(f"prediction: {prediction}")
|
|
results = [(0, [""], prediction.split())]
|
|
return results, total_duration
|
|
|
|
|
|
def collate_wrapper(batch):
|
|
speeches, durations, labels, ids = [], [], [], []
|
|
for item in batch:
|
|
speech = item["audio"]["array"]
|
|
duration = speech.shape[-1]
|
|
speech = speech.astype(np.float32)
|
|
speech = torch.from_numpy(speech)
|
|
speeches.append(speech)
|
|
durations.append(duration)
|
|
labels.append(item["text"])
|
|
if 'id' in item:
|
|
ids.append(item["id"])
|
|
else:
|
|
ids.append(item["segment_id"])
|
|
return speeches, durations, labels, ids
|
|
|
|
|
|
def decode_dataset(
|
|
model,
|
|
dataset,
|
|
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
|
|
dtype='float16',
|
|
batch_size=1,
|
|
num_beams=1,
|
|
normalizer=None,
|
|
sample_rate=16000,
|
|
mel_filters_dir=None,
|
|
compute_cer=False,
|
|
padding_strategy="longest"):
|
|
data_loader = DataLoader(dataset,
|
|
batch_size=batch_size,
|
|
num_workers=0,
|
|
pin_memory=True,
|
|
collate_fn=collate_wrapper)
|
|
results = []
|
|
total_duration = 0
|
|
for batch in data_loader:
|
|
waveforms, durations, texts, ids = batch
|
|
total_duration += sum(durations) / sample_rate
|
|
|
|
for wave in waveforms:
|
|
assert wave.is_pinned()
|
|
|
|
if padding_strategy == "longest":
|
|
longest_duration = max(durations)
|
|
elif padding_strategy == "nopad":
|
|
longest_duration = 0
|
|
else:
|
|
longest_duration = int(16000 * 30)
|
|
|
|
features = [
|
|
log_mel_spectrogram(wave,
|
|
model.n_mels,
|
|
padding=longest_duration - wave.shape[-1],
|
|
device='cuda',
|
|
mel_filters_dir=mel_filters_dir).unsqueeze(0)
|
|
for wave in waveforms
|
|
]
|
|
|
|
# pad to the even number of features, for remove_padding option, conv layer padding corner case
|
|
for i, feature in enumerate(features):
|
|
if feature.shape[2] % 2:
|
|
features[i] = torch.nn.functional.pad(feature, (0, 1))
|
|
|
|
features_input_lengths = torch.tensor([f.shape[2] for f in features],
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
|
|
predictions = model.process_batch(features, features_input_lengths,
|
|
text_prefix, num_beams)
|
|
for wav_id, label, prediction in zip(ids, texts, predictions):
|
|
# remove all special tokens in the prediction
|
|
prediction = re.sub(r'<\|.*?\|>', '', prediction)
|
|
if normalizer:
|
|
prediction, label = normalizer(prediction), normalizer(label)
|
|
label = label.split()
|
|
prediction = prediction.split()
|
|
if compute_cer:
|
|
label = list("".join(label))
|
|
prediction = list("".join(prediction))
|
|
print(f"wav_id: {wav_id}, label: {label}, prediction: {prediction}")
|
|
results.append((wav_id, label, prediction))
|
|
return results, total_duration
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
model = WhisperTRTLLM(args.engine_dir, args.debug, args.assets_dir,
|
|
args.batch_size, args.use_py_session, args.num_beams)
|
|
normalizer = EnglishTextNormalizer()
|
|
dataset = load_dataset(args.dataset,
|
|
args.dataset_name,
|
|
split=args.dataset_split)
|
|
if args.enable_warmup:
|
|
results, total_duration = decode_dataset(
|
|
model,
|
|
dataset,
|
|
batch_size=args.batch_size,
|
|
num_beams=args.num_beams,
|
|
normalizer=normalizer,
|
|
mel_filters_dir=args.assets_dir,
|
|
padding_strategy=args.padding_strategy)
|
|
|
|
start_time = time.time()
|
|
if args.input_file:
|
|
results, total_duration = decode_wav_file(
|
|
args.input_file,
|
|
model,
|
|
text_prefix=args.text_prefix,
|
|
dtype=args.dtype,
|
|
batch_size=args.batch_size,
|
|
num_beams=args.num_beams,
|
|
mel_filters_dir=args.assets_dir,
|
|
padding_strategy=args.padding_strategy)
|
|
else:
|
|
results, total_duration = decode_dataset(
|
|
model,
|
|
dataset,
|
|
text_prefix=args.text_prefix,
|
|
dtype=args.dtype,
|
|
batch_size=args.batch_size,
|
|
num_beams=args.num_beams,
|
|
normalizer=normalizer,
|
|
mel_filters_dir=args.assets_dir,
|
|
compute_cer=args.compute_cer,
|
|
padding_strategy=args.padding_strategy)
|
|
elapsed = time.time() - start_time
|
|
results = sorted(results)
|
|
|
|
Path(args.results_dir).mkdir(parents=True, exist_ok=True)
|
|
store_transcripts(filename=f"{args.results_dir}/recogs-{args.name}.txt",
|
|
texts=results)
|
|
|
|
with open(f"{args.results_dir}/errs-{args.name}.txt", "w") as f:
|
|
total_error_rate = write_error_stats(f,
|
|
"test-set",
|
|
results,
|
|
enable_log=True)
|
|
if args.accuracy_check and args.dataset == "hf-internal-testing/librispeech_asr_dummy" and not args.input_file:
|
|
assert total_error_rate <= 2.8, f"Word Error rate using whisper large-v3 model should be 2.40%, but got {total_error_rate}"
|
|
|
|
rtf = elapsed / total_duration
|
|
s = f"RTF: {rtf:.4f}\n"
|
|
s += f"total_duration: {total_duration:.3f} seconds\n"
|
|
s += f"({total_duration/3600:.2f} hours)\n"
|
|
s += f"processing time: {elapsed:.3f} seconds " f"({elapsed/3600:.2f} hours)\n"
|
|
s += f"batch size: {args.batch_size}\n"
|
|
s += f"num_beams: {args.num_beams}\n"
|
|
s += f"total error rate: {total_error_rate:.2f}%\n"
|
|
print(s)
|
|
|
|
with open(f"{args.results_dir}/rtf-{args.name}.txt", "w") as f:
|
|
f.write(s)
|
|
|
|
del model
|