TensorRT-LLMs/_modules/tensorrt_llm/models/redrafter/model.html
2025-09-17 05:52:50 +00:00

943 lines
75 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.models.redrafter.model &#8212; TensorRT-LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../../_static/custom.css?v=95073da6" />
<!-- So that users can add custom icons -->
<script src="../../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/models/redrafter/model';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.1.0rc5';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../../genindex.html" />
<link rel="search" title="Search" href="../../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.1.0rc5" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../../index.html">
<img src="../../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../../index.html">
<img src="../../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-deepseek-r1-on-trtllm.html">Quick Start Recipe for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-llama3.3-70b-on-trtllm.html">Quick Start Recipe for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-llama4-scout-on-trtllm.html">Quick Start Recipe for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-gpt-oss-on-trtllm.html">Quick Start Recipe for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/disagg-serving.html">Disaggregated Serving (Beta)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/dev-containers.html">Using Dev Containers</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.models.redrafter.model</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.models.redrafter.model</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">collections</span><span class="w"> </span><span class="kn">import</span> <span class="n">OrderedDict</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tensorrt</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">trt</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm._common</span><span class="w"> </span><span class="kn">import</span> <span class="n">default_net</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings</span><span class="w"> </span><span class="kn">import</span> <span class="n">KVCacheType</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.functional</span><span class="w"> </span><span class="kn">import</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">categorical_sample</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.models</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLaMAForCausalLM</span><span class="p">,</span> <span class="n">QWenForCausalLM</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.models.generation_mixin</span><span class="w"> </span><span class="kn">import</span> <span class="n">GenerationMixin</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..._utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">pad_vocab_size</span><span class="p">,</span> <span class="n">str_dtype_to_trt</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.drafter</span><span class="w"> </span><span class="kn">import</span> <span class="n">Drafter</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.redrafter_helper</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">_beam_search_candidates</span><span class="p">,</span> <span class="n">_beams2tree</span><span class="p">,</span>
<span class="n">_process_logits_and_hidden_states</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">ReDrafterMixin</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">str_dtype_to_trt</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">vocab_size</span>
<span class="n">vocab_size_padded</span> <span class="o">=</span> <span class="n">pad_vocab_size</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
<span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">drafter</span> <span class="o">=</span> <span class="n">Drafter</span><span class="o">.</span><span class="n">from_config</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="n">vocab_size_padded</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">redrafter_num_beams</span>
<span class="bp">self</span><span class="o">.</span><span class="n">beam_candidate_length</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">redrafter_draft_len_per_beam</span>
<span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_candidate_length</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># including true token</span>
<span class="bp">self</span><span class="o">.</span><span class="n">greedy_search</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">redrafter_greedy_search</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_rnn</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">redrafter_is_rnn</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">drafter</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="si">}</span><span class="s2"> != </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">drafter</span><span class="o">.</span><span class="n">dtype</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_fwd_helper</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">lm_logits</span><span class="p">,</span> <span class="n">embedding</span><span class="p">,</span> <span class="n">drafter</span><span class="p">,</span>
<span class="n">kwargs</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Must enable remove_input_padding:</span>
<span class="sd"> hidden_states [total_tokens, H]</span>
<span class="sd"> lm_logits [total_tokens, V]</span>
<span class="sd"> 1. process_logits: context vs gen</span>
<span class="sd"> a. Context: just return the last hidden states, and logits/probs</span>
<span class="sd"> b. Gen:</span>
<span class="sd"> i. verify: use lm_logits, draft_probs, draft_indices, draft_tokens</span>
<span class="sd"> ii. select hidden state and update probs</span>
<span class="sd"> 3. Sample token based on probs</span>
<span class="sd"> 4. Generate candidates using hidden_states, sampled token</span>
<span class="sd"> 5. Using beams, generate validation buffers, mark them as output</span>
<span class="sd"> 6. Mark all the outputs</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">num_beams</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span>
<span class="n">beam_length</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span>
<span class="c1"># Get the inputs needed</span>
<span class="n">rand_data_sample</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;rand_data_sample&#39;</span><span class="p">]</span>
<span class="n">position_ids_base</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;position_ids_base&#39;</span><span class="p">]</span>
<span class="c1"># Step 1: Process logits and hidden states</span>
<span class="c1"># process the base model output (verify for gen-phase)</span>
<span class="n">probs</span><span class="p">,</span> <span class="n">draft_input</span><span class="p">,</span> <span class="n">num_accepted_tokens</span><span class="p">,</span> \
<span class="n">accepted_beam_index</span> <span class="o">=</span> <span class="n">_process_logits_and_hidden_states</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">lm_logits</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">kwargs</span><span class="p">)</span>
<span class="c1"># NOTE: num_accepted_tokens doesn&#39;t include true token so add 1 here</span>
<span class="n">num_accepted_tokens</span> <span class="o">=</span> <span class="n">num_accepted_tokens</span> <span class="o">+</span> <span class="mi">1</span>
<span class="c1"># At this point:</span>
<span class="c1"># probs : [bs, V]</span>
<span class="c1"># hidden_states : [bs, H]</span>
<span class="c1"># Step 2: Sample token</span>
<span class="n">next_token</span> <span class="o">=</span> <span class="n">categorical_sample</span><span class="p">(</span><span class="n">probs</span><span class="p">,</span> <span class="n">rand_data_sample</span><span class="p">)</span>
<span class="c1"># Step 3: beam search</span>
<span class="n">new_draft_tokens</span><span class="p">,</span> <span class="n">new_draft_logits</span> <span class="o">=</span> <span class="n">_beam_search_candidates</span><span class="p">(</span>
<span class="n">draft_input</span><span class="p">,</span> <span class="n">next_token</span><span class="p">,</span> <span class="n">embedding</span><span class="p">,</span> <span class="n">drafter</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_rnn</span><span class="p">)</span>
<span class="c1"># Step 4: tree processing</span>
<span class="n">active_tokens_flattened</span><span class="p">,</span> <span class="n">new_draft_token_indices</span><span class="p">,</span> <span class="n">new_mask</span><span class="p">,</span> \
<span class="n">new_position_offsets</span><span class="p">,</span> <span class="n">packed_position_ids</span><span class="p">,</span> <span class="n">next_num_gen_tokens</span><span class="p">,</span> <span class="n">max_gen_token</span><span class="p">,</span> \
<span class="n">total_gen_token</span> <span class="o">=</span> <span class="n">_beams2tree</span><span class="p">(</span><span class="n">new_draft_tokens</span><span class="p">,</span> <span class="n">num_beams</span><span class="p">,</span> <span class="n">beam_length</span><span class="p">,</span>
<span class="n">position_ids_base</span> <span class="o">+</span> <span class="n">num_accepted_tokens</span><span class="p">)</span>
<span class="c1"># Step 5: mark all the tensors we need</span>
<span class="n">num_accepted_tokens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;num_accepted_tokens&#39;</span><span class="p">)</span>
<span class="n">accepted_beam_index</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;accepted_beam_index&#39;</span><span class="p">)</span>
<span class="n">max_gen_token</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;max_gen_token&#39;</span><span class="p">)</span>
<span class="n">total_gen_token</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;total_gen_token&#39;</span><span class="p">)</span>
<span class="n">next_num_gen_tokens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_spec_decoding_generation_lengths&#39;</span><span class="p">)</span>
<span class="n">active_tokens_flattened</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_flat_tokens&#39;</span><span class="p">)</span>
<span class="n">new_draft_tokens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_draft_tokens&#39;</span><span class="p">)</span>
<span class="n">new_draft_logits</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_draft_probs&#39;</span><span class="p">)</span>
<span class="n">new_draft_token_indices</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_draft_indices&#39;</span><span class="p">)</span>
<span class="n">new_mask</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;spec_decoding_mask&#39;</span><span class="p">)</span>
<span class="n">new_position_offsets</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_spec_decoding_position_offsets&#39;</span><span class="p">)</span>
<span class="n">packed_position_ids</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;packed_position_ids&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">next_token</span><span class="p">,</span> <span class="n">probs</span><span class="p">,</span> <span class="n">draft_input</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> 0. run base model, get logits, hidden_states</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">extra_args</span> <span class="o">=</span> <span class="p">[</span>
<span class="s1">&#39;draft_tokens&#39;</span><span class="p">,</span>
<span class="s1">&#39;draft_indices&#39;</span><span class="p">,</span>
<span class="s1">&#39;draft_probs&#39;</span><span class="p">,</span>
<span class="s1">&#39;device_request_types&#39;</span><span class="p">,</span>
<span class="s1">&#39;redrafter_inverted_temperature&#39;</span><span class="p">,</span>
<span class="s1">&#39;rand_data_validation&#39;</span><span class="p">,</span>
<span class="s1">&#39;rand_data_sample&#39;</span><span class="p">,</span>
<span class="s1">&#39;position_ids_base&#39;</span><span class="p">,</span>
<span class="p">]</span>
<span class="n">use_cache</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">base_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">k</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">extra_args</span><span class="p">}</span>
<span class="k">if</span> <span class="n">use_cache</span> <span class="ow">and</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span> <span class="ow">is</span> <span class="kc">False</span><span class="p">:</span>
<span class="n">lm_logits</span><span class="p">,</span> <span class="n">presents</span><span class="p">,</span> <span class="n">hidden_states</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">base_kwargs</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">lm_logits</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">base_kwargs</span><span class="p">)</span>
<span class="c1"># lm_logits could be in fp32</span>
<span class="n">lm_logits_cast</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">lm_logits</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> <span class="c1"># no-op if same type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_network_output</span><span class="p">(</span><span class="s2">&quot;hidden_states&quot;</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">)</span> <span class="c1"># debugging</span>
<span class="n">new_draft_tokens</span><span class="p">,</span> <span class="n">new_draft_logits</span><span class="p">,</span> <span class="n">probs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_fwd_helper</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="p">,</span>
<span class="n">lm_logits_cast</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="o">.</span><span class="n">vocab_embedding</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">drafter</span><span class="p">,</span>
<span class="n">kwargs</span><span class="o">=</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">new_draft_tokens</span><span class="p">,</span> <span class="n">new_draft_logits</span><span class="p">,</span> <span class="n">probs</span>
<span class="k">def</span><span class="w"> </span><span class="nf">prepare_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Inputs needed:</span>
<span class="sd"> Assuming, max_gen_tokens = 1 + nb*(bl - 1), counting true token</span>
<span class="sd"> device_request_types: [bs]</span>
<span class="sd"> draft_tokens: [bs, nb, bl]</span>
<span class="sd"> draft_indices: [bs, nb, bl]</span>
<span class="sd"> draft_probs: [bs, nb, bl-1, V]</span>
<span class="sd"> spec_decoding_generation_lengths: [bs]</span>
<span class="sd"> spec_decoding_position_offsets: [bs, max_gen_tokens]</span>
<span class="sd"> spec_decoding_packed_mask: [bs, max_gen_tokens, packed_length] **</span>
<span class="sd"> redrafter_inverted_temperature: [bs]</span>
<span class="sd"> rand_data_sample: [bs]</span>
<span class="sd"> rand_data_validation: [bs, nb, bl-1]</span>
<span class="sd"> ** The mask is tricky since the boolean mask will need to be</span>
<span class="sd"> packed in runtime. So, the last dim will be:</span>
<span class="sd"> packed_length = ceil(max_gen_tokens/32)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">default_range</span> <span class="o">=</span> <span class="n">GenerationMixin</span><span class="o">.</span><span class="n">default_range</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="n">use_gpt_attention_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span>
<span class="n">use_gemm_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gemm_plugin</span>
<span class="n">paged_kv_cache</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_batch_size&#39;</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">max_batch_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">bb_range</span> <span class="o">=</span> <span class="n">default_range</span><span class="p">(</span><span class="n">max_batch_size</span><span class="p">)</span>
<span class="n">bb0_range</span> <span class="o">=</span> <span class="n">default_range</span><span class="p">(</span><span class="n">max_batch_size</span><span class="p">,</span> <span class="n">min_range</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">opt_offset</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">num_beam_tokens</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span>
<span class="n">max_draft_len</span> <span class="o">=</span> <span class="n">num_beam_tokens</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span> <span class="c1"># ignore the true token</span>
<span class="n">max_gen_token_len</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">+</span> <span class="n">max_draft_len</span> <span class="c1"># for the true token</span>
<span class="n">max_gen_token_len_range</span> <span class="o">=</span> <span class="n">default_range</span><span class="p">(</span><span class="n">max_gen_token_len</span><span class="p">)</span>
<span class="n">bb_max_gen_token_len_range</span> <span class="o">=</span> <span class="n">default_range</span><span class="p">(</span><span class="n">max_gen_token_len</span> <span class="o">*</span>
<span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">min_range</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;speculative_decoding_draft_tokens_external&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_draft_len&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">max_draft_len</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_is_generation_length_variable&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">prepare_inputs</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">enable_two_optimization_profiles</span> <span class="o">=</span> <span class="n">GenerationMixin</span><span class="o">.</span><span class="n">has_ctx_gen_opt_profiles</span><span class="p">(</span>
<span class="n">use_gpt_attention_plugin</span><span class="o">=</span><span class="n">use_gpt_attention_plugin</span><span class="p">,</span>
<span class="n">use_gemm_plugin</span><span class="o">=</span><span class="n">use_gemm_plugin</span><span class="p">,</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">KVCacheType</span><span class="o">.</span><span class="n">PAGED</span>
<span class="k">if</span> <span class="n">paged_kv_cache</span> <span class="k">else</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">CONTINUOUS</span><span class="p">)</span>
<span class="k">if</span> <span class="n">enable_two_optimization_profiles</span><span class="p">:</span>
<span class="n">bb_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">bb_range</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">]</span>
<span class="n">bb0_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">bb0_range</span><span class="p">,</span> <span class="n">bb0_range</span><span class="p">]</span>
<span class="n">max_gen_token_len_range</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">max_gen_token_len_range</span><span class="p">,</span> <span class="n">max_gen_token_len_range</span>
<span class="p">]</span>
<span class="n">bb_max_gen_token_len_range</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">bb_max_gen_token_len_range</span><span class="p">,</span> <span class="n">bb_max_gen_token_len_range</span>
<span class="p">]</span>
<span class="n">num_beams_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">]</span>
<span class="n">beam_length_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span><span class="p">]</span>
<span class="n">candidate_length_range</span> <span class="o">=</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">beam_candidate_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_candidate_length</span>
<span class="p">]</span>
<span class="n">vocab_size_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">bb_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">bb_range</span><span class="p">]</span>
<span class="n">bb0_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">bb0_range</span><span class="p">]</span>
<span class="n">max_gen_token_len_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">max_gen_token_len_range</span><span class="p">]</span>
<span class="n">bb_max_gen_token_len_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">bb_max_gen_token_len_range</span><span class="p">]</span>
<span class="n">num_beams_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">]</span>
<span class="n">beam_length_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span><span class="p">]</span>
<span class="n">candidate_length_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">beam_candidate_length</span><span class="p">]</span>
<span class="n">vocab_size_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">]</span>
<span class="n">device_request_types</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;device_request_types&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">draft_tokens</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;draft_tokens&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size_wt0&#39;</span><span class="p">,</span> <span class="n">bb0_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_beams&#39;</span><span class="p">,</span> <span class="n">num_beams_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;beam_length&#39;</span><span class="p">,</span> <span class="n">beam_length_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">draft_indices</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;draft_indices&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size_wt0&#39;</span><span class="p">,</span> <span class="n">bb0_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_beams&#39;</span><span class="p">,</span> <span class="n">num_beams_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;beam_length&#39;</span><span class="p">,</span> <span class="n">beam_length_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">draft_probs</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;draft_probs&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size_wt0&#39;</span><span class="p">,</span> <span class="n">bb0_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_beams&#39;</span><span class="p">,</span> <span class="n">num_beams_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;candidate_length&#39;</span><span class="p">,</span> <span class="n">candidate_length_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;vocab_size&#39;</span><span class="p">,</span> <span class="n">vocab_size_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">redrafter_inverted_temperature</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;redrafter_inverted_temperature&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s2">&quot;batch_size&quot;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">rand_data_validation</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;rand_data_validation&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">beam_length</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size_wt0&#39;</span><span class="p">,</span> <span class="n">bb0_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_beams&#39;</span><span class="p">,</span> <span class="n">num_beams_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;candidate_length&#39;</span><span class="p">,</span> <span class="n">candidate_length_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">rand_data_sample</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;rand_data_sample&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">position_ids_base</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s2">&quot;position_ids_base&quot;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s2">&quot;batch_size&quot;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]),</span>
<span class="p">)</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;device_request_types&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">device_request_types</span> <span class="c1"># needed by process_logits</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;draft_tokens&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">draft_tokens</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;draft_indices&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">draft_indices</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;draft_probs&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">draft_probs</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;redrafter_inverted_temperature&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">redrafter_inverted_temperature</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;rand_data_validation&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">rand_data_validation</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;rand_data_sample&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">rand_data_sample</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;position_ids_base&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">position_ids_base</span>
<span class="k">return</span> <span class="n">inputs</span>
<div class="viewcode-block" id="ReDrafterForQWenLM">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.ReDrafterForQWenLM">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">ReDrafterForQWenLM</span><span class="p">(</span><span class="n">ReDrafterMixin</span><span class="p">,</span> <span class="n">QWenForCausalLM</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;ReDrafter implementation for QWen models.</span>
<span class="sd"> Combines:</span>
<span class="sd"> - Base QWen model functionality from QWenForCausalLM</span>
<span class="sd"> - Drafting/speculative decoding logic from ReDrafterMixin</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
<div class="viewcode-block" id="ReDrafterForLLaMALM">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.ReDrafterForLLaMALM">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">ReDrafterForLLaMALM</span><span class="p">(</span><span class="n">ReDrafterMixin</span><span class="p">,</span> <span class="n">LLaMAForCausalLM</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;ReDrafter implementation for LLaMA models.</span>
<span class="sd"> Combines:</span>
<span class="sd"> - Base LLaMA model functionality from LLaMAForCausalLM</span>
<span class="sd"> - Drafting/speculative decoding logic from ReDrafterMixin</span>
<span class="sd"> &quot;&quot;&quot;</span></div>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on September 15, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/0c9430e">0c9430e</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>