TensorRT-LLMs/benchmarks/python/gpt_benchmark.py
2024-04-16 19:40:08 +08:00

421 lines
19 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from dataclasses import asdict
from math import ceil
import pandas as pd
import tensorrt as trt
import torch
import tensorrt_llm
from tensorrt_llm.profiler import bytes_to_target_unit
from allowed_configs import get_build_config, BuildConfig # isort:skip
from base_benchmark import BaseBenchmark # isort:skip
from build import build_gpt, get_quant_config # isort:skip
def element_size(dtype: str):
str_to_size_in_bytes = dict(float16=2,
float32=4,
int64=8,
int32=4,
int8=1,
bool=1,
bfloat16=2,
fp8=1)
return str_to_size_in_bytes[dtype]
class GPTBenchmark(BaseBenchmark):
def __init__(self, args, batch_sizes, in_out_lens, rank, world_size):
super().__init__(args.engine_dir, args.model, args.dtype, rank,
world_size, args.serial_build)
self.batch_sizes = batch_sizes
self.in_out_lens = in_out_lens
self.num_beams = args.num_beams
self.mode = args.mode
self.build_time = 0
self.cuda_graph_mode = args.enable_cuda_graph
self.build_config = None
# this dtype may be modified based on quantization mode later, when the fp8/int8 kv cache is used
self.kv_dtype = args.dtype
# approximate the weights size in the engine by using engine size
# the actual weights size shall be smaller because there are some other data in the engine file.
# for large model, this approximate is close enough.
self.weights_size_approx = 0
self.dump_layer_info = args.dump_layer_info
# change profiling_verbosity to detailed when enabling dump layer info
if self.dump_layer_info:
args.profiling_verbosity = "detailed"
if args.engine_dir is not None:
# Get build configs from engine directory is done in base class
# Deserialize engine from engine directory
self.serialize_path = os.path.join(args.engine_dir,
self.engine_name)
with open(self.serialize_path, 'rb') as f:
engine_buffer = f.read()
self.weights_size_approx = len(engine_buffer)
else:
self.build_config = get_build_config(args.model, return_dict=False)
for key, value in asdict(self.build_config).items():
setattr(self, key, value)
if args.force_num_layer_1:
self.num_layers = 1
if args.max_batch_size is not None:
self.max_batch_size = args.max_batch_size
if args.max_input_len is not None:
self.max_input_len = args.max_input_len
if args.max_output_len is not None:
self.max_output_len = args.max_output_len
self.quant_config = get_quant_config(args.quantization)
self.quant_mode = self.quant_config.quant_mode
self.enable_fp8 = self.quant_mode.has_fp8_qdq()
self.fp8_kv_cache = self.quant_mode.has_fp8_kv_cache()
if self.quant_mode.has_fp8_kv_cache():
self.kv_dtype = 'fp8'
if self.quant_mode.has_int8_kv_cache():
self.kv_dtype = 'int8'
# Plugins
self.use_gpt_attention_plugin = False
self.remove_input_padding = False
self.use_mamba_conv1d_plugin = False
if args.mode == 'plugin':
self.use_gpt_attention_plugin = True
self.remove_input_padding = True
self.use_moe_plugin = True
self.use_mamba_conv1d_plugin = True
elif args.mode == 'ootb-except-mha':
self.use_gpt_attention_plugin = True
engine_buffer, build_time = build_gpt(args)
self.weights_size_approx = engine_buffer.nbytes
self.build_time = build_time
assert engine_buffer is not None
if args.build_only:
return
if not hasattr(self, 'num_kv_heads') or self.num_kv_heads is None:
self.num_kv_heads = self.num_heads
model_config = tensorrt_llm.runtime.ModelConfig(
max_batch_size=self.max_batch_size,
max_beam_width=self.num_beams,
vocab_size=self.vocab_size,
num_layers=self.num_layers,
num_heads=self.num_heads // self.world_size,
num_kv_heads=ceil(self.num_kv_heads / self.world_size),
hidden_size=self.hidden_size // self.world_size,
gpt_attention_plugin=self.use_gpt_attention_plugin,
paged_kv_cache=self.paged_kv_cache if hasattr(
self, 'paged_kv_cache') else False,
paged_state=self.paged_state
if hasattr(self, 'paged_state') else False,
dtype=self.dtype,
remove_input_padding=self.remove_input_padding,
quant_mode=self.quant_mode,
use_custom_all_reduce=self.use_custom_all_reduce,
mamba_conv1d_plugin=self.use_mamba_conv1d_plugin,
)
if args.model == 'chatglm_6b':
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=130005,
pad_id=3,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.ChatGLMGenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif args.model in ['chatglm2_6b', 'chatglm3_6b']:
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=2,
pad_id=0,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif 'mamba' in args.model:
model_config.mamba_d_state = self.mamba_d_state
model_config.mamba_d_conv = self.mamba_d_conv
model_config.mamba_expand = self.mamba_expand
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=0, pad_id=0, top_k=args.top_k, top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.MambaLMHeadModelGenerationSession(
model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
else:
end_id = 50256
pad_id = 50256
if "llama" in args.model:
end_id = 2
pad_id = 0
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=end_id,
pad_id=pad_id,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
# Print context memory size for CI/CD to track.
context_mem_size = self.decoder.context_mem_size
print(
f"Allocated {context_mem_size / 1048576.0:.2f} MiB for execution context memory."
)
def get_config(self):
for inlen, outlen in self.in_out_lens:
if inlen > self.max_input_len or outlen > self.max_output_len:
print(
f'[WARNING] check inlen({inlen}) <= max_inlen({self.max_input_len}) and '
f'outlen({outlen}) <= max_outlen({self.max_output_len}) failed, skipping.'
)
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
print(
f'[WARNING] check batch_size({batch_size}) '
f'<= max_batch_size({self.max_batch_size}) failed, skipping.'
)
continue
yield (batch_size, inlen, outlen)
def prepare_inputs(self, config):
batch_size, inlen, outlen = config[0], config[1], config[2]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = torch.tensor([inlen
for _ in range(batch_size)]).int().cuda()
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
return (input_ids, input_lengths)
def get_report_dict(self, benchmark_profiler=None):
report_dict = super().get_report_dict(
benchmark_profiler=benchmark_profiler)
if benchmark_profiler is not None:
report_dict["generation_time(ms)"] = None
report_dict["total_generated_tokens"] = None
report_dict["generation_tokens_per_second"] = None
return report_dict
def run(self, inputs, config, benchmark_profiler=None):
batch_size, inlen, outlen = config[0], config[1], config[2]
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
if self.remove_input_padding:
self.decoder.decode_batch(inputs[0],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
else:
self.decoder.decode(inputs[0],
inputs[1],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
torch.cuda.synchronize()
@staticmethod
def kv_cache_elem_per_token(config: BuildConfig, tp_size, pp_size) -> int:
# you need to multiply the size by element size, and multiply by the seq length
# Warning: this function returns the upper bound between different ranks when any one of the following is true:
# num_layer % pp_size !=0, hidden_size % num_kv_heads != 0, num_kv_heads % tp_size != 0
local_nlayers = ceil(config.num_layers / pp_size)
kv_heads = config.num_kv_heads if config.num_kv_heads is not None else config.num_heads
size_per_head = ceil(config.hidden_size / kv_heads)
local_heads = ceil(kv_heads / tp_size)
return 2 * local_nlayers * size_per_head * local_heads
def check_memory(self, io_shapes: list, raise_exception=False):
'''Compare the estimated GPU memory requirements for weights + activations + kv cache with the total GPU memory and log it.
Raise exception when the \p raise_exception parameter is true.
'''
# we don't want to block the test due to this
if self.build_config is None:
tensorrt_llm.logger.warning(
"Didn't have the build config object, skipping check the memory"
)
return
assert isinstance(self.build_config, BuildConfig)
batch_size, inlen, outlen = io_shapes[0], io_shapes[1], io_shapes[2]
kv_cache_size_in_bytes = batch_size*self.num_beams*(inlen + outlen)* \
self.kv_cache_elem_per_token(self.build_config, self.runtime_mapping.tp_size, self.runtime_mapping.pp_size) * element_size(self.kv_dtype)
# when MHA is OOTB, it requires 2x KV cache size, one for past as engine input, one for present as engine output
if not self.use_gpt_attention_plugin:
kv_cache_size_in_bytes *= 2
kv_cache_size_in_mb = bytes_to_target_unit(kv_cache_size_in_bytes,
"MiB")
activation_size_in_mb = bytes_to_target_unit(
self.decoder.runtime.engine.device_memory_size, "MiB")
weights_size_in_mb = bytes_to_target_unit(self.weights_size_approx,
"MiB")
total_memory_approx_in_mb = kv_cache_size_in_mb + activation_size_in_mb + weights_size_in_mb
_, _, total = tensorrt_llm.profiler.device_memory_info()
total_in_mb = bytes_to_target_unit(total, 'MiB')
prefix = "[Memory Estimation]"
mem_msg = f"{prefix} activation memory:{activation_size_in_mb:.3f} MiB, kv_cache:{kv_cache_size_in_mb:.3f} MiB, weights approximate:{weights_size_in_mb:.3f} MiB, " \
f"approximate required GPU memory: {total_memory_approx_in_mb:.3f} MiB, total GPU memory: {total_in_mb:.3f} MiB"
tensorrt_llm.logger.info(mem_msg)
build_args = dict(batch_size=batch_size,
num_beams=self.num_beams,
input_length=inlen,
output_length=outlen,
max_batch_size=self.build_config.max_batch_size,
max_input_len=self.build_config.max_input_len,
max_output_len=self.build_config.max_output_len,
max_beam_width=self.build_config.max_beam_width)
for k, v in build_args.items():
tensorrt_llm.logger.info(f"{prefix} {k}:{v}")
tensorrt_llm.logger.info(
"grep the \"Total Activation\" and \"Total Weights\" from verbose TRT engine build log to see the precise memory size for those."
)
if raise_exception and total_memory_approx_in_mb >= total_in_mb:
raise Exception(
"Total memory estimation bigger than total gpu memory, the case will likely to OOM, needs enhancement of waive the test case, see logs about the memory usage details"
)
def report(self,
config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv,
benchmark_profiler=None):
report_dict = super().get_report_dict()
batch_size, inlen, outlen = config[0], config[1], config[2]
tokens_per_sec = round(batch_size * outlen / (latency / 1000), 2)
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_kv_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = inlen
report_dict["output_length"] = outlen
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = tokens_per_sec
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if benchmark_profiler is not None:
iter_count = benchmark_profiler.get_aux_info('iter_count')
generation_time_ms = benchmark_profiler.get_timer_value(
'generation_time')
generation_step_count = benchmark_profiler.get_aux_info(
'generation_step_count')
token_per_step = batch_size * self.num_beams
total_tokens = generation_step_count * token_per_step
report_dict["generation_time(ms)"] = round(
generation_time_ms / iter_count, 3)
report_dict["total_generated_tokens"] = total_tokens / iter_count
tokens_per_second = round(
total_tokens * 1000.0 / generation_time_ms, 3)
report_dict["generation_tokens_per_second"] = tokens_per_second
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)
if self.dump_layer_info:
engine_inspector = self.decoder.engine_inspector
inspector_result = engine_inspector.get_engine_information(
trt.LayerInformationFormat.JSON)
json_result = json.loads(inspector_result)
layers = json_result["Layers"]
for layer_idx, _ in enumerate(layers):
layer_info = engine_inspector.get_layer_information(
layer_idx, trt.LayerInformationFormat.ONELINE)
print(layer_info)
if benchmark_profiler is not None and benchmark_profiler.is_recording_perf_profile:
perf_profile_data = self.decoder.profiler.results
if not perf_profile_data:
tensorrt_llm.logger.error("profiler data is empty")
return
ctx_layers = list()
generation_layers = list()
start = 0
ctx_iter_cnt = 0
generation_iter_cnt = 0
# split context/generations layer information
for idx, layer_info in enumerate(perf_profile_data):
if layer_info[0] == "step":
if layer_info[1] == 0:
ctx_layers.extend(perf_profile_data[start:idx])
ctx_iter_cnt += 1
else:
generation_layers.extend(perf_profile_data[start:idx])
generation_iter_cnt += 1
start = idx + 1
# Reduce all data
def reduce_layer_data(layers):
layer_infos = dict()
for layer in layers:
if layer[0] in layer_infos:
layer_infos[layer[0]] += layer[1]
else:
layer_infos[layer[0]] = layer[1]
return layer_infos
# Dump kernel data
def dump_kernel_profile_table(name: str, profile_data: list,
iter_cnt: int):
table = pd.DataFrame(
[[k, '{:0.3f}'.format(v)] for k, v in profile_data.items()],
columns=['{} Phase LayerName'.format(name), 'times (ms)'])
def ljust(s):
s = s.astype(str).str.strip()
return s.str.ljust(s.str.len().max())
print(table.apply(ljust).to_string(index=False, justify='left'))
print("{} phase step iter: {}".format(name, iter_cnt))
ctx_layer_infos = reduce_layer_data(ctx_layers)
generation_layer_infos = reduce_layer_data(generation_layers)
dump_kernel_profile_table("Context", ctx_layer_infos, ctx_iter_cnt)
dump_kernel_profile_table("Generation", generation_layer_infos,
generation_iter_cnt)