TensorRT-LLMs/examples/multimodal/run.py
2024-04-16 19:40:08 +08:00

468 lines
20 KiB
Python

import argparse
import json
import os
import sys
from pathlib import Path
import requests
# isort: off
import torch
import tensorrt as trt
# isort: on
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (AutoConfig, AutoProcessor, AutoTokenizer,
Blip2Processor, NougatProcessor, NougatTokenizerFast)
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm.runtime import ModelRunner, Session, TensorInfo
sys.path.append(str(Path(__file__).parent.parent))
from enc_dec.run import TRTLLMEncDecModel
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_new_tokens', type=int, default=30)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--visual_engine_dir',
type=str,
default=None,
help='Directory containing visual TRT engines')
parser.add_argument('--llm_engine_dir',
type=str,
default=None,
help='Directory containing TRT-LLM engines')
parser.add_argument('--hf_model_dir',
type=str,
default=None,
help="Directory containing tokenizer")
parser.add_argument('--input_text',
type=str,
default=None,
help='Text prompt to LLM')
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--run_profiling',
action='store_true',
help='Profile runtime over several iterations')
parser.add_argument('--check_accuracy',
action='store_true',
help='Check correctness of text output')
return parser.parse_args()
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
class MultimodalModelRunner:
def __init__(self, args):
self.args = args
self.runtime_rank = tensorrt_llm.mpi_rank()
device_id = self.runtime_rank % torch.cuda.device_count()
torch.cuda.set_device(device_id)
self.device = "cuda:%d" % (device_id)
self.stream = torch.cuda.Stream(torch.cuda.current_device())
torch.cuda.set_stream(self.stream)
# parse model type from visual engine config
with open(os.path.join(self.args.visual_engine_dir, "config.json"),
"r") as f:
config = json.load(f)
self.model_type = config['builder_config']['model_type']
self.decoder_llm = not (
't5' in self.model_type or 'nougat' in self.model_type
) # BLIP2-T5 and Nougat are using encoder-decoder models as LLMs
self.profiling_iterations = 20
self.init_image_encoder()
self.init_tokenizer()
self.init_llm()
def init_tokenizer(self):
if self.model_type == 'nougat':
self.tokenizer = NougatTokenizerFast.from_pretrained(
self.args.hf_model_dir)
else:
self.tokenizer = AutoTokenizer.from_pretrained(
self.args.hf_model_dir, use_fast=False, use_legacy=False)
self.tokenizer.padding_side = "right"
def init_image_encoder(self):
vision_encoder_path = os.path.join(self.args.visual_engine_dir,
'visual_encoder.engine')
logger.info(f'Loading engine from {vision_encoder_path}')
with open(vision_encoder_path, 'rb') as f:
engine_buffer = f.read()
logger.info(f'Creating session from engine {vision_encoder_path}')
self.visual_encoder_session = Session.from_serialized_engine(
engine_buffer)
def init_llm(self):
if self.decoder_llm:
self.model = ModelRunner.from_dir(self.args.llm_engine_dir,
rank=tensorrt_llm.mpi_rank(),
debug_mode=False,
stream=self.stream)
self.model_config = self.model.session._model_config
self.runtime_mapping = self.model.session.mapping
else:
self.model = TRTLLMEncDecModel.from_engine(
os.path.basename(self.args.hf_model_dir),
self.args.llm_engine_dir,
skip_encoder=(self.model_type == 'nougat'),
debug_mode=False,
stream=self.stream)
if self.model_type == 'nougat':
self.model_config = self.model.decoder_model_config
self.runtime_mapping = self.model.decoder_runtime_mapping
else:
self.model_config = self.model.encoder_model_config
self.runtime_mapping = self.model.encoder_runtime_mapping
def generate(self, pre_prompt, post_prompt, image, decoder_input_ids,
max_new_tokens, warmup):
if not warmup:
profiler.start("Generate")
profiler.start("Vision")
visual_features, visual_atts = self.get_visual_features(image)
if not warmup:
profiler.stop("Vision")
pre_input_ids = self.tokenizer(pre_prompt,
return_tensors="pt",
padding=True).input_ids
if post_prompt[0] is not None:
post_input_ids = self.tokenizer(post_prompt,
return_tensors="pt",
padding=True).input_ids
length = pre_input_ids.shape[1] + post_input_ids.shape[
1] + visual_atts.shape[1]
else:
post_input_ids = None
length = pre_input_ids.shape[1] + visual_atts.shape[1]
input_lengths = torch.IntTensor([length] * args.batch_size).to(
torch.int32)
input_ids, ptuning_args = self.setup_fake_prompts(
visual_features, pre_input_ids, post_input_ids, input_lengths)
if warmup: return None
profiler.start("LLM")
if self.decoder_llm:
end_id = self.tokenizer.eos_token_id
if 'opt' in self.model_type and 'blip2' in self.model_type:
# For BLIP2-OPT, model outputs a "\n" at the end.
# we avoid it by using newline as the end token
end_id = self.tokenizer.encode("\n",
add_special_tokens=False)[0]
ptuning_args[0] = torch.stack([ptuning_args[0]])
output_ids = self.model.generate(input_ids,
sampling_config=None,
prompt_table=ptuning_args[0],
max_new_tokens=max_new_tokens,
end_id=end_id,
pad_id=self.tokenizer.pad_token_id,
top_k=self.args.top_k,
num_beams=self.args.num_beams,
output_sequence_lengths=False,
return_dict=False)
else:
if self.model_type == 'nougat':
# Trim encoder input_ids to match visual features shape
ids_shape = (self.args.batch_size, visual_features.shape[1])
input_ids = torch.zeros(ids_shape, dtype=torch.int32)
output_ids = self.model.generate(
input_ids,
decoder_input_ids,
max_new_tokens,
num_beams=self.args.num_beams,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
debug_mode=False,
prompt_embedding_table=ptuning_args[0],
prompt_tasks=ptuning_args[1],
prompt_vocab_size=ptuning_args[2])
# Reset input_lengths to match decoder_input_ids
input_lengths = torch.ones(input_lengths.shape,
dtype=input_lengths.dtype)
profiler.stop("LLM")
if tensorrt_llm.mpi_rank() == 0:
# Extract a list of tensors of shape beam_width x output_ids.
output_beams_list = [
self.tokenizer.batch_decode(
output_ids[batch_idx, :, input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(self.args.batch_size)
]
stripped_text = [[
output_beams_list[batch_idx][beam_idx].strip()
for beam_idx in range(self.args.num_beams)
] for batch_idx in range(self.args.batch_size)]
profiler.stop("Generate")
return stripped_text
else:
profiler.stop("Generate")
return None
def get_visual_features(self, image):
visual_features = {'input': image.half()}
visual_output_info = self.visual_encoder_session.infer_shapes(
[TensorInfo('input', trt.DataType.HALF, image.shape)])
visual_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device=image.device)
for t in visual_output_info
}
ok = self.visual_encoder_session.run(visual_features, visual_outputs,
self.stream.cuda_stream)
assert ok, "Runtime execution failed for vision encoder session"
self.stream.synchronize()
image_embeds = visual_outputs['output']
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
return image_embeds, image_atts
def setup_fake_prompts(self, visual_features, pre_input_ids, post_input_ids,
input_lengths):
# Assemble fake prompts which points to image embedding actually
fake_prompt_id = torch.arange(
self.model_config.vocab_size, self.model_config.vocab_size +
visual_features.shape[0] * visual_features.shape[1])
fake_prompt_id = fake_prompt_id.reshape(visual_features.shape[0],
visual_features.shape[1])
if post_input_ids is not None:
input_ids = [pre_input_ids, fake_prompt_id, post_input_ids]
else:
input_ids = [fake_prompt_id, pre_input_ids]
input_ids = torch.cat(input_ids, dim=1).contiguous().to(torch.int32)
if self.decoder_llm or self.runtime_mapping.is_first_pp_rank():
ptuning_args = self.ptuning_setup(visual_features, input_ids,
input_lengths)
else:
ptuning_args = [None, None, None]
return input_ids, ptuning_args
def ptuning_setup(self, prompt_table, input_ids, input_lengths):
hidden_size = self.model_config.hidden_size * self.runtime_mapping.tp_size
if prompt_table is not None:
task_vocab_size = torch.tensor(
[prompt_table.shape[1]],
dtype=torch.int32,
).cuda()
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
assert prompt_table.shape[
1] == hidden_size, "Prompt table dimensions do not match hidden size"
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(
self.model_config.dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
if self.model_config.remove_input_padding:
tasks = torch.zeros([torch.sum(input_lengths)],
dtype=torch.int32).cuda()
if self.decoder_llm: tasks = tasks.unsqueeze(0)
else:
tasks = torch.zeros(input_ids.shape, dtype=torch.int32).cuda()
return [prompt_table, tasks, task_vocab_size]
def load_test_image(self):
if "vila" in self.model_type:
img_url = 'https://github.com/Efficient-Large-Model/VILA/raw/main/demo_images/av.png'
image = Image.open(requests.get(img_url,
stream=True).raw).convert('RGB')
elif "nougat" in self.model_type:
filepath = hf_hub_download(
repo_id="hf-internal-testing/fixtures_docvqa",
filename="nougat_paper.png",
repo_type="dataset")
image = Image.open(filepath)
else:
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
image = Image.open(requests.get(img_url,
stream=True).raw).convert('RGB')
return image
def setup_inputs(self, input_text, raw_image):
if 'blip2' in self.model_type:
processor = Blip2Processor.from_pretrained(self.model_type)
image = processor(raw_image, input_text,
return_tensors="pt")['pixel_values']
if input_text is None:
input_text = "Question: which city is this? Answer:"
pre_prompt = input_text
post_prompt = None
elif 'nougat' in self.model_type:
processor = NougatProcessor.from_pretrained(self.args.hf_model_dir)
image = processor(raw_image, return_tensors="pt")['pixel_values']
# Nougat doesn't need text prompt (mBART use single token to start generation), just leave a dummy one here
if input_text is None:
input_text = "Question: which city is this? Answer:"
pre_prompt = input_text
post_prompt = None
elif 'llava' in self.model_type or 'vila' in self.model_type:
# LLaVA and VILA
if self.model_type == "llava":
pre_prompt = "USER:\n"
if input_text is None:
input_text = "Question: which city is this? Answer:"
elif self.model_type == "vila":
pre_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: "
if input_text is None:
input_text = "Please describe the traffic condition."
post_prompt = input_text + " ASSISTANT:"
if self.model_type == "vila":
sys.path.append(self.args.hf_model_dir + "/../VILA")
from llava.model import LlavaLlamaForCausalLM
model = LlavaLlamaForCausalLM.from_pretrained(
self.args.hf_model_dir, torch_dtype=torch.float16)
vision_tower = model.get_vision_tower()
image_processor = vision_tower.image_processor
image = image_processor(images=raw_image,
return_tensors="pt")['pixel_values']
else:
processor = AutoProcessor.from_pretrained(
self.args.hf_model_dir)
image = processor(text=input_text,
images=raw_image,
return_tensors="pt")['pixel_values']
# Repeat inputs to match batch size
pre_prompt = [pre_prompt] * self.args.batch_size
post_prompt = [post_prompt] * self.args.batch_size
image = image.expand(self.args.batch_size, -1, -1, -1).contiguous()
image = image.to(self.device)
# Generate decoder_input_ids for enc-dec models
# Custom prompts can be added as:
# decoder_input_ids = model.tokenizer(decoder_prompt).input_ids
if self.decoder_llm:
decoder_input_ids = None
else:
config = AutoConfig.from_pretrained(args.hf_model_dir)
decoder_start_id = config.decoder_start_token_id # T5
if decoder_start_id is None:
decoder_start_id = config.decoder.bos_token_id # Nougat
decoder_input_ids = torch.IntTensor([[decoder_start_id]])
decoder_input_ids = decoder_input_ids.repeat((args.batch_size, 1))
return input_text, pre_prompt, post_prompt, image, decoder_input_ids
def run(self, input_text, input_image, max_new_tokens):
input_text, pre_prompt, post_prompt, processed_image, decoder_input_ids = model.setup_inputs(
input_text, raw_image)
model.generate(pre_prompt,
post_prompt,
processed_image,
decoder_input_ids,
max_new_tokens,
warmup=True)
num_iters = self.profiling_iterations if self.args.run_profiling else 1
for _ in range(num_iters):
output_text = model.generate(pre_prompt,
post_prompt,
processed_image,
decoder_input_ids,
max_new_tokens,
warmup=False)
if self.runtime_rank == 0:
self.print_result(input_text, output_text)
return output_text
def print_result(self, input_text, output_text):
logger.info("---------------------------------------------------------")
if self.model_type != 'nougat':
logger.info(f"\n[Q] {input_text}")
logger.info(f"\n[A] {output_text[0]}")
if args.num_beams == 1:
output_ids = self.tokenizer(output_text[0][0],
add_special_tokens=False)['input_ids']
logger.info(f"Generated {len(output_ids)} tokens")
if self.args.check_accuracy:
for i in range(self.args.batch_size - 1):
if not (output_text[i] == output_text[i + 1]):
logger.info(f"Output {i} and {i + 1} do not match")
assert False
if self.model_type != 'nougat':
if self.model_type == "vila":
assert output_text[0][0].lower(
) == 'the traffic condition in the image is quite busy, with multiple cars and bicycles sharing the road. there are also pedestrians walking on'
else:
assert output_text[0][0].lower() == 'singapore'
if self.args.run_profiling:
msec_per_batch = lambda name: 1000 * profiler.elapsed_time_in_sec(
name) / self.profiling_iterations
logger.info('Latencies per batch (msec)')
logger.info('TRT vision encoder: %.1f' % (msec_per_batch('Vision')))
logger.info('TRTLLM LLM generate: %.1f' % (msec_per_batch('LLM')))
logger.info('Multimodal generate: %.1f' %
(msec_per_batch('Generate')))
logger.info("---------------------------------------------------------")
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
model = MultimodalModelRunner(args)
raw_image = model.load_test_image()
text_output = model.run(args.input_text, raw_image, args.max_new_tokens)