mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
468 lines
20 KiB
Python
468 lines
20 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import requests
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from transformers import (AutoConfig, AutoProcessor, AutoTokenizer,
|
|
Blip2Processor, NougatProcessor, NougatTokenizerFast)
|
|
|
|
import tensorrt_llm
|
|
import tensorrt_llm.profiler as profiler
|
|
from tensorrt_llm import logger
|
|
from tensorrt_llm.runtime import ModelRunner, Session, TensorInfo
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent))
|
|
from enc_dec.run import TRTLLMEncDecModel
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--max_new_tokens', type=int, default=30)
|
|
parser.add_argument('--batch_size', type=int, default=1)
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
parser.add_argument('--visual_engine_dir',
|
|
type=str,
|
|
default=None,
|
|
help='Directory containing visual TRT engines')
|
|
parser.add_argument('--llm_engine_dir',
|
|
type=str,
|
|
default=None,
|
|
help='Directory containing TRT-LLM engines')
|
|
parser.add_argument('--hf_model_dir',
|
|
type=str,
|
|
default=None,
|
|
help="Directory containing tokenizer")
|
|
parser.add_argument('--input_text',
|
|
type=str,
|
|
default=None,
|
|
help='Text prompt to LLM')
|
|
parser.add_argument('--num_beams',
|
|
type=int,
|
|
help="Use beam search if num_beams >1",
|
|
default=1)
|
|
parser.add_argument('--top_k', type=int, default=1)
|
|
parser.add_argument('--run_profiling',
|
|
action='store_true',
|
|
help='Profile runtime over several iterations')
|
|
parser.add_argument('--check_accuracy',
|
|
action='store_true',
|
|
help='Check correctness of text output')
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def trt_dtype_to_torch(dtype):
|
|
if dtype == trt.float16:
|
|
return torch.float16
|
|
elif dtype == trt.float32:
|
|
return torch.float32
|
|
elif dtype == trt.int32:
|
|
return torch.int32
|
|
else:
|
|
raise TypeError("%s is not supported" % dtype)
|
|
|
|
|
|
class MultimodalModelRunner:
|
|
|
|
def __init__(self, args):
|
|
self.args = args
|
|
|
|
self.runtime_rank = tensorrt_llm.mpi_rank()
|
|
device_id = self.runtime_rank % torch.cuda.device_count()
|
|
torch.cuda.set_device(device_id)
|
|
self.device = "cuda:%d" % (device_id)
|
|
|
|
self.stream = torch.cuda.Stream(torch.cuda.current_device())
|
|
torch.cuda.set_stream(self.stream)
|
|
|
|
# parse model type from visual engine config
|
|
with open(os.path.join(self.args.visual_engine_dir, "config.json"),
|
|
"r") as f:
|
|
config = json.load(f)
|
|
self.model_type = config['builder_config']['model_type']
|
|
self.decoder_llm = not (
|
|
't5' in self.model_type or 'nougat' in self.model_type
|
|
) # BLIP2-T5 and Nougat are using encoder-decoder models as LLMs
|
|
|
|
self.profiling_iterations = 20
|
|
|
|
self.init_image_encoder()
|
|
self.init_tokenizer()
|
|
self.init_llm()
|
|
|
|
def init_tokenizer(self):
|
|
if self.model_type == 'nougat':
|
|
self.tokenizer = NougatTokenizerFast.from_pretrained(
|
|
self.args.hf_model_dir)
|
|
else:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.args.hf_model_dir, use_fast=False, use_legacy=False)
|
|
|
|
self.tokenizer.padding_side = "right"
|
|
|
|
def init_image_encoder(self):
|
|
vision_encoder_path = os.path.join(self.args.visual_engine_dir,
|
|
'visual_encoder.engine')
|
|
logger.info(f'Loading engine from {vision_encoder_path}')
|
|
with open(vision_encoder_path, 'rb') as f:
|
|
engine_buffer = f.read()
|
|
logger.info(f'Creating session from engine {vision_encoder_path}')
|
|
self.visual_encoder_session = Session.from_serialized_engine(
|
|
engine_buffer)
|
|
|
|
def init_llm(self):
|
|
if self.decoder_llm:
|
|
self.model = ModelRunner.from_dir(self.args.llm_engine_dir,
|
|
rank=tensorrt_llm.mpi_rank(),
|
|
debug_mode=False,
|
|
stream=self.stream)
|
|
self.model_config = self.model.session._model_config
|
|
self.runtime_mapping = self.model.session.mapping
|
|
else:
|
|
self.model = TRTLLMEncDecModel.from_engine(
|
|
os.path.basename(self.args.hf_model_dir),
|
|
self.args.llm_engine_dir,
|
|
skip_encoder=(self.model_type == 'nougat'),
|
|
debug_mode=False,
|
|
stream=self.stream)
|
|
|
|
if self.model_type == 'nougat':
|
|
self.model_config = self.model.decoder_model_config
|
|
self.runtime_mapping = self.model.decoder_runtime_mapping
|
|
else:
|
|
self.model_config = self.model.encoder_model_config
|
|
self.runtime_mapping = self.model.encoder_runtime_mapping
|
|
|
|
def generate(self, pre_prompt, post_prompt, image, decoder_input_ids,
|
|
max_new_tokens, warmup):
|
|
if not warmup:
|
|
profiler.start("Generate")
|
|
profiler.start("Vision")
|
|
visual_features, visual_atts = self.get_visual_features(image)
|
|
if not warmup:
|
|
profiler.stop("Vision")
|
|
|
|
pre_input_ids = self.tokenizer(pre_prompt,
|
|
return_tensors="pt",
|
|
padding=True).input_ids
|
|
if post_prompt[0] is not None:
|
|
post_input_ids = self.tokenizer(post_prompt,
|
|
return_tensors="pt",
|
|
padding=True).input_ids
|
|
length = pre_input_ids.shape[1] + post_input_ids.shape[
|
|
1] + visual_atts.shape[1]
|
|
else:
|
|
post_input_ids = None
|
|
length = pre_input_ids.shape[1] + visual_atts.shape[1]
|
|
|
|
input_lengths = torch.IntTensor([length] * args.batch_size).to(
|
|
torch.int32)
|
|
input_ids, ptuning_args = self.setup_fake_prompts(
|
|
visual_features, pre_input_ids, post_input_ids, input_lengths)
|
|
|
|
if warmup: return None
|
|
|
|
profiler.start("LLM")
|
|
if self.decoder_llm:
|
|
end_id = self.tokenizer.eos_token_id
|
|
if 'opt' in self.model_type and 'blip2' in self.model_type:
|
|
# For BLIP2-OPT, model outputs a "\n" at the end.
|
|
# we avoid it by using newline as the end token
|
|
end_id = self.tokenizer.encode("\n",
|
|
add_special_tokens=False)[0]
|
|
|
|
ptuning_args[0] = torch.stack([ptuning_args[0]])
|
|
output_ids = self.model.generate(input_ids,
|
|
sampling_config=None,
|
|
prompt_table=ptuning_args[0],
|
|
max_new_tokens=max_new_tokens,
|
|
end_id=end_id,
|
|
pad_id=self.tokenizer.pad_token_id,
|
|
top_k=self.args.top_k,
|
|
num_beams=self.args.num_beams,
|
|
output_sequence_lengths=False,
|
|
return_dict=False)
|
|
else:
|
|
if self.model_type == 'nougat':
|
|
# Trim encoder input_ids to match visual features shape
|
|
ids_shape = (self.args.batch_size, visual_features.shape[1])
|
|
input_ids = torch.zeros(ids_shape, dtype=torch.int32)
|
|
|
|
output_ids = self.model.generate(
|
|
input_ids,
|
|
decoder_input_ids,
|
|
max_new_tokens,
|
|
num_beams=self.args.num_beams,
|
|
bos_token_id=self.tokenizer.bos_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
eos_token_id=self.tokenizer.eos_token_id,
|
|
debug_mode=False,
|
|
prompt_embedding_table=ptuning_args[0],
|
|
prompt_tasks=ptuning_args[1],
|
|
prompt_vocab_size=ptuning_args[2])
|
|
|
|
# Reset input_lengths to match decoder_input_ids
|
|
input_lengths = torch.ones(input_lengths.shape,
|
|
dtype=input_lengths.dtype)
|
|
profiler.stop("LLM")
|
|
|
|
if tensorrt_llm.mpi_rank() == 0:
|
|
# Extract a list of tensors of shape beam_width x output_ids.
|
|
output_beams_list = [
|
|
self.tokenizer.batch_decode(
|
|
output_ids[batch_idx, :, input_lengths[batch_idx]:],
|
|
skip_special_tokens=True)
|
|
for batch_idx in range(self.args.batch_size)
|
|
]
|
|
|
|
stripped_text = [[
|
|
output_beams_list[batch_idx][beam_idx].strip()
|
|
for beam_idx in range(self.args.num_beams)
|
|
] for batch_idx in range(self.args.batch_size)]
|
|
profiler.stop("Generate")
|
|
return stripped_text
|
|
else:
|
|
profiler.stop("Generate")
|
|
return None
|
|
|
|
def get_visual_features(self, image):
|
|
visual_features = {'input': image.half()}
|
|
visual_output_info = self.visual_encoder_session.infer_shapes(
|
|
[TensorInfo('input', trt.DataType.HALF, image.shape)])
|
|
visual_outputs = {
|
|
t.name: torch.empty(tuple(t.shape),
|
|
dtype=trt_dtype_to_torch(t.dtype),
|
|
device=image.device)
|
|
for t in visual_output_info
|
|
}
|
|
|
|
ok = self.visual_encoder_session.run(visual_features, visual_outputs,
|
|
self.stream.cuda_stream)
|
|
assert ok, "Runtime execution failed for vision encoder session"
|
|
self.stream.synchronize()
|
|
|
|
image_embeds = visual_outputs['output']
|
|
image_atts = torch.ones(image_embeds.size()[:-1],
|
|
dtype=torch.long).to(image.device)
|
|
|
|
return image_embeds, image_atts
|
|
|
|
def setup_fake_prompts(self, visual_features, pre_input_ids, post_input_ids,
|
|
input_lengths):
|
|
# Assemble fake prompts which points to image embedding actually
|
|
fake_prompt_id = torch.arange(
|
|
self.model_config.vocab_size, self.model_config.vocab_size +
|
|
visual_features.shape[0] * visual_features.shape[1])
|
|
fake_prompt_id = fake_prompt_id.reshape(visual_features.shape[0],
|
|
visual_features.shape[1])
|
|
|
|
if post_input_ids is not None:
|
|
input_ids = [pre_input_ids, fake_prompt_id, post_input_ids]
|
|
else:
|
|
input_ids = [fake_prompt_id, pre_input_ids]
|
|
input_ids = torch.cat(input_ids, dim=1).contiguous().to(torch.int32)
|
|
|
|
if self.decoder_llm or self.runtime_mapping.is_first_pp_rank():
|
|
ptuning_args = self.ptuning_setup(visual_features, input_ids,
|
|
input_lengths)
|
|
else:
|
|
ptuning_args = [None, None, None]
|
|
|
|
return input_ids, ptuning_args
|
|
|
|
def ptuning_setup(self, prompt_table, input_ids, input_lengths):
|
|
hidden_size = self.model_config.hidden_size * self.runtime_mapping.tp_size
|
|
if prompt_table is not None:
|
|
task_vocab_size = torch.tensor(
|
|
[prompt_table.shape[1]],
|
|
dtype=torch.int32,
|
|
).cuda()
|
|
prompt_table = prompt_table.view(
|
|
(prompt_table.shape[0] * prompt_table.shape[1],
|
|
prompt_table.shape[2]))
|
|
|
|
assert prompt_table.shape[
|
|
1] == hidden_size, "Prompt table dimensions do not match hidden size"
|
|
|
|
prompt_table = prompt_table.cuda().to(
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(
|
|
self.model_config.dtype))
|
|
else:
|
|
prompt_table = torch.empty([1, hidden_size]).cuda()
|
|
task_vocab_size = torch.zeros([1]).cuda()
|
|
|
|
if self.model_config.remove_input_padding:
|
|
tasks = torch.zeros([torch.sum(input_lengths)],
|
|
dtype=torch.int32).cuda()
|
|
if self.decoder_llm: tasks = tasks.unsqueeze(0)
|
|
else:
|
|
tasks = torch.zeros(input_ids.shape, dtype=torch.int32).cuda()
|
|
|
|
return [prompt_table, tasks, task_vocab_size]
|
|
|
|
def load_test_image(self):
|
|
if "vila" in self.model_type:
|
|
img_url = 'https://github.com/Efficient-Large-Model/VILA/raw/main/demo_images/av.png'
|
|
image = Image.open(requests.get(img_url,
|
|
stream=True).raw).convert('RGB')
|
|
elif "nougat" in self.model_type:
|
|
filepath = hf_hub_download(
|
|
repo_id="hf-internal-testing/fixtures_docvqa",
|
|
filename="nougat_paper.png",
|
|
repo_type="dataset")
|
|
image = Image.open(filepath)
|
|
else:
|
|
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
|
|
image = Image.open(requests.get(img_url,
|
|
stream=True).raw).convert('RGB')
|
|
|
|
return image
|
|
|
|
def setup_inputs(self, input_text, raw_image):
|
|
if 'blip2' in self.model_type:
|
|
processor = Blip2Processor.from_pretrained(self.model_type)
|
|
image = processor(raw_image, input_text,
|
|
return_tensors="pt")['pixel_values']
|
|
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
|
|
pre_prompt = input_text
|
|
post_prompt = None
|
|
elif 'nougat' in self.model_type:
|
|
processor = NougatProcessor.from_pretrained(self.args.hf_model_dir)
|
|
image = processor(raw_image, return_tensors="pt")['pixel_values']
|
|
|
|
# Nougat doesn't need text prompt (mBART use single token to start generation), just leave a dummy one here
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
|
|
pre_prompt = input_text
|
|
post_prompt = None
|
|
elif 'llava' in self.model_type or 'vila' in self.model_type:
|
|
# LLaVA and VILA
|
|
if self.model_type == "llava":
|
|
pre_prompt = "USER:\n"
|
|
if input_text is None:
|
|
input_text = "Question: which city is this? Answer:"
|
|
elif self.model_type == "vila":
|
|
pre_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: "
|
|
if input_text is None:
|
|
input_text = "Please describe the traffic condition."
|
|
post_prompt = input_text + " ASSISTANT:"
|
|
|
|
if self.model_type == "vila":
|
|
sys.path.append(self.args.hf_model_dir + "/../VILA")
|
|
from llava.model import LlavaLlamaForCausalLM
|
|
model = LlavaLlamaForCausalLM.from_pretrained(
|
|
self.args.hf_model_dir, torch_dtype=torch.float16)
|
|
vision_tower = model.get_vision_tower()
|
|
image_processor = vision_tower.image_processor
|
|
image = image_processor(images=raw_image,
|
|
return_tensors="pt")['pixel_values']
|
|
else:
|
|
processor = AutoProcessor.from_pretrained(
|
|
self.args.hf_model_dir)
|
|
image = processor(text=input_text,
|
|
images=raw_image,
|
|
return_tensors="pt")['pixel_values']
|
|
|
|
# Repeat inputs to match batch size
|
|
pre_prompt = [pre_prompt] * self.args.batch_size
|
|
post_prompt = [post_prompt] * self.args.batch_size
|
|
image = image.expand(self.args.batch_size, -1, -1, -1).contiguous()
|
|
image = image.to(self.device)
|
|
|
|
# Generate decoder_input_ids for enc-dec models
|
|
# Custom prompts can be added as:
|
|
# decoder_input_ids = model.tokenizer(decoder_prompt).input_ids
|
|
if self.decoder_llm:
|
|
decoder_input_ids = None
|
|
else:
|
|
config = AutoConfig.from_pretrained(args.hf_model_dir)
|
|
decoder_start_id = config.decoder_start_token_id # T5
|
|
if decoder_start_id is None:
|
|
decoder_start_id = config.decoder.bos_token_id # Nougat
|
|
|
|
decoder_input_ids = torch.IntTensor([[decoder_start_id]])
|
|
decoder_input_ids = decoder_input_ids.repeat((args.batch_size, 1))
|
|
|
|
return input_text, pre_prompt, post_prompt, image, decoder_input_ids
|
|
|
|
def run(self, input_text, input_image, max_new_tokens):
|
|
input_text, pre_prompt, post_prompt, processed_image, decoder_input_ids = model.setup_inputs(
|
|
input_text, raw_image)
|
|
|
|
model.generate(pre_prompt,
|
|
post_prompt,
|
|
processed_image,
|
|
decoder_input_ids,
|
|
max_new_tokens,
|
|
warmup=True)
|
|
num_iters = self.profiling_iterations if self.args.run_profiling else 1
|
|
for _ in range(num_iters):
|
|
output_text = model.generate(pre_prompt,
|
|
post_prompt,
|
|
processed_image,
|
|
decoder_input_ids,
|
|
max_new_tokens,
|
|
warmup=False)
|
|
if self.runtime_rank == 0:
|
|
self.print_result(input_text, output_text)
|
|
return output_text
|
|
|
|
def print_result(self, input_text, output_text):
|
|
logger.info("---------------------------------------------------------")
|
|
if self.model_type != 'nougat':
|
|
logger.info(f"\n[Q] {input_text}")
|
|
logger.info(f"\n[A] {output_text[0]}")
|
|
|
|
if args.num_beams == 1:
|
|
output_ids = self.tokenizer(output_text[0][0],
|
|
add_special_tokens=False)['input_ids']
|
|
logger.info(f"Generated {len(output_ids)} tokens")
|
|
|
|
if self.args.check_accuracy:
|
|
for i in range(self.args.batch_size - 1):
|
|
if not (output_text[i] == output_text[i + 1]):
|
|
logger.info(f"Output {i} and {i + 1} do not match")
|
|
assert False
|
|
if self.model_type != 'nougat':
|
|
if self.model_type == "vila":
|
|
assert output_text[0][0].lower(
|
|
) == 'the traffic condition in the image is quite busy, with multiple cars and bicycles sharing the road. there are also pedestrians walking on'
|
|
else:
|
|
assert output_text[0][0].lower() == 'singapore'
|
|
|
|
if self.args.run_profiling:
|
|
msec_per_batch = lambda name: 1000 * profiler.elapsed_time_in_sec(
|
|
name) / self.profiling_iterations
|
|
logger.info('Latencies per batch (msec)')
|
|
logger.info('TRT vision encoder: %.1f' % (msec_per_batch('Vision')))
|
|
logger.info('TRTLLM LLM generate: %.1f' % (msec_per_batch('LLM')))
|
|
logger.info('Multimodal generate: %.1f' %
|
|
(msec_per_batch('Generate')))
|
|
|
|
logger.info("---------------------------------------------------------")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
args = parse_arguments()
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
|
|
model = MultimodalModelRunner(args)
|
|
|
|
raw_image = model.load_test_image()
|
|
text_output = model.run(args.input_text, raw_image, args.max_new_tokens)
|