mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-25 13:12:45 +08:00
1317 lines
55 KiB
Python
1317 lines
55 KiB
Python
import copy
|
|
import functools
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
import torch.nn as nn
|
|
from datasets import load_dataset
|
|
from tqdm import tqdm
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
|
from transformers.pytorch_utils import Conv1D
|
|
|
|
from ..._utils import pad_vocab_size, release_gc
|
|
from ...layers import MoeConfig
|
|
from ...mapping import Mapping
|
|
from ...quantization import QuantAlgo
|
|
from ..modeling_utils import PretrainedConfig, QuantConfig
|
|
from .weight import load_from_hf_checkpoint
|
|
|
|
try:
|
|
from transformers import LlavaConfig, LlavaForConditionalGeneration
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
pass
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
|
|
"""
|
|
This function has two purposes:
|
|
- compute quantized weights, scaled either per-tensor or per-column
|
|
- compute scaling factors
|
|
|
|
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
|
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
|
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
|
|
|
Here is the list of what we need (T means per-tensor, C per-column):
|
|
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
|
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
|
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
|
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
|
to quant range (int8) (used for CUBLAS) (T, C)
|
|
|
|
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
|
but then the model would change depending on the number of GPUs used.
|
|
|
|
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
|
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
|
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
|
"""
|
|
weights = weights.detach().cpu().numpy()
|
|
|
|
# compute weight scaling factors for fp->int8 and int8->fp
|
|
if is_qkv and not multi_query_mode:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
|
dim=-1, keepdims=True)[0].cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
|
|
-1).cpu().numpy()
|
|
elif is_qkv and multi_query_mode:
|
|
hidden_dim = weights.shape[0]
|
|
local_dim = act_range["w"].shape[0]
|
|
kv_dim = (local_dim - hidden_dim) // 2
|
|
scale_w_q = act_range["w"][0:hidden_dim]
|
|
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
|
scale_w_v = act_range["w"][-kv_dim:]
|
|
|
|
scale_w_qkv_t = torch.concat([
|
|
scale_w_q.max(dim=0, keepdim=True)[0],
|
|
scale_w_k.max(dim=0, keepdim=True)[0],
|
|
scale_w_v.max(dim=0, keepdim=True)[0]
|
|
])
|
|
|
|
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
else:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
|
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
|
|
|
scale_w_orig_quant_c = scale_w_orig_quant_c.astype(np.float32)
|
|
scale_w_orig_quant_t = scale_w_orig_quant_t.astype(np.float32)
|
|
|
|
# compute the rest of needed scaling factors
|
|
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
|
|
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
|
|
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
|
|
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_t)
|
|
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_c)
|
|
if is_qkv and not multi_query_mode:
|
|
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
|
scale_w_orig_quant_c.shape)
|
|
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
|
scale_w_orig_quant_c.shape)
|
|
if is_qkv and multi_query_mode:
|
|
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
|
scale_w_q.shape)
|
|
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
|
scale_w_k.shape)
|
|
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
|
scale_w_v.shape)
|
|
scale_y_accum_quant_t = np.concatenate(
|
|
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
|
scale_w_quant_orig_t = np.concatenate([
|
|
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
|
])
|
|
|
|
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
|
|
|
if is_qkv and multi_query_mode:
|
|
weight_int8 = to_i8(weights / scale_w_quant_orig_t)
|
|
else:
|
|
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
|
return {
|
|
"weight.int8": weight_int8,
|
|
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
|
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
|
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
|
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
|
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
|
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
|
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
|
}
|
|
|
|
|
|
@torch.no_grad()
|
|
def apply_smoothing(scales,
|
|
gemm_weights,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
dtype=torch.float32,
|
|
layernorm_1p=False):
|
|
if not isinstance(gemm_weights, list):
|
|
gemm_weights = [gemm_weights]
|
|
|
|
if layernorm_weights is not None:
|
|
assert layernorm_weights.numel() == scales.numel()
|
|
layernorm_weights.div_(scales).to(dtype)
|
|
if layernorm_bias is not None:
|
|
assert layernorm_bias.numel() == scales.numel()
|
|
layernorm_bias.div_(scales).to(dtype)
|
|
if layernorm_1p:
|
|
layernorm_weights += (1 / scales) - 1
|
|
|
|
for gemm in gemm_weights:
|
|
gemm.mul_(scales.view(1, -1)).to(dtype)
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_gemm(gemm_weights,
|
|
act_scales,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
alpha=0.5,
|
|
weight_scales=None):
|
|
if not isinstance(gemm_weights, list):
|
|
gemm_weights = [gemm_weights]
|
|
orig_dtype = gemm_weights[0].dtype
|
|
|
|
for gemm in gemm_weights:
|
|
# gemm_weights are expected to be transposed
|
|
assert gemm.shape[1] == act_scales.numel()
|
|
|
|
if weight_scales is None:
|
|
weight_scales = torch.cat(
|
|
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
|
dim=0)
|
|
weight_scales = weight_scales.max(dim=0)[0]
|
|
weight_scales.to(float).clamp(min=1e-5)
|
|
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
|
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
|
|
|
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
|
|
orig_dtype)
|
|
|
|
return scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_gemm_fc1_gate(fc1_weights,
|
|
gate_weights,
|
|
act_scales,
|
|
layernorm_weights=None,
|
|
layernorm_bias=None,
|
|
alpha=0.5,
|
|
weight_scales=None):
|
|
gemm_weights = []
|
|
if not isinstance(fc1_weights, list):
|
|
fc1_weights = [fc1_weights]
|
|
if not isinstance(gate_weights, list):
|
|
gate_weights = [gate_weights]
|
|
|
|
for i in range(len(fc1_weights)):
|
|
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
|
|
gemm_weights.append(gemm_weight)
|
|
|
|
orig_dtype = gemm_weights[0].dtype
|
|
|
|
for gemm in gemm_weights:
|
|
# gemm_weights are expected to be transposed
|
|
assert gemm.shape[1] == act_scales.numel()
|
|
|
|
if weight_scales is None:
|
|
weight_scales = torch.cat(
|
|
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
|
dim=0)
|
|
weight_scales = weight_scales.max(dim=0)[0]
|
|
weight_scales.to(float).clamp(min=1e-5)
|
|
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
|
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
|
|
|
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
|
|
layernorm_bias, orig_dtype)
|
|
|
|
return scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_llama_model(model, scales, alpha, llama_qkv_para, llama_smoother):
|
|
# Smooth the activation and weights with smoother = $\diag{s}$
|
|
for name, module in model.named_modules():
|
|
if not isinstance(
|
|
module,
|
|
LlamaDecoderLayer) and not module.__class__.__name__ in [
|
|
"InternLMDecoderLayer", "MistralDecoderLayer"
|
|
]:
|
|
continue
|
|
# qkv_proj
|
|
layer_name_q = name + ".self_attn.q_proj"
|
|
layer_name_k = name + ".self_attn.k_proj"
|
|
layer_name_v = name + ".self_attn.v_proj"
|
|
layer_name_qkv = name + ".self_attn.qkv_proj"
|
|
|
|
weight = torch.cat([
|
|
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
|
|
module.self_attn.v_proj.weight
|
|
],
|
|
dim=0)
|
|
|
|
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
|
|
module.input_layernorm.weight, None, alpha)
|
|
|
|
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
|
|
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
|
|
scales[layer_name_qkv]["y"] = torch.cat([
|
|
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
|
|
scales[layer_name_v]["y"]
|
|
],
|
|
dim=0)
|
|
|
|
# see transpose_weights function
|
|
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
|
|
|
|
# =================================================================
|
|
layer_name = name + ".self_attn.o_proj"
|
|
smoother = smooth_gemm(module.self_attn.o_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
llama_smoother[layer_name] = smoother.float()
|
|
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
fc1_layer_name = name + ".mlp.gate_proj"
|
|
gate_layer_name = name + ".mlp.up_proj"
|
|
|
|
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
|
|
module.mlp.up_proj.weight,
|
|
scales[fc1_layer_name]["x"],
|
|
module.post_attention_layernorm.weight,
|
|
None, alpha)
|
|
|
|
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
|
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
|
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
# ==================================================================
|
|
layer_name = name + ".mlp.down_proj"
|
|
smoother = smooth_gemm(module.mlp.down_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
llama_smoother[layer_name] = smoother.float()
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
|
|
dim=1)[0]
|
|
|
|
|
|
@torch.no_grad()
|
|
def capture_activation_range(model,
|
|
tokenizer,
|
|
dataset,
|
|
num_samples=512,
|
|
seq_len=512):
|
|
model.eval()
|
|
device = next(model.parameters()).device
|
|
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def stat_tensor(name, tensor, act_scales, key):
|
|
hidden_dim = tensor.shape[-1]
|
|
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
|
comming_max = torch.max(tensor, dim=0)[0].float()
|
|
|
|
if act_scales[name][key] is None:
|
|
act_scales[name][key] = comming_max
|
|
else:
|
|
act_scales[name][key] = torch.max(act_scales[name][key],
|
|
comming_max)
|
|
|
|
def stat_input_hook(m, x, y, name):
|
|
if isinstance(x, tuple):
|
|
x = x[0]
|
|
stat_tensor(name, x, act_scales, "x")
|
|
stat_tensor(name, y, act_scales, "y")
|
|
|
|
if act_scales[name]["w"] is None:
|
|
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
|
|
None).max(dim=1)[0]
|
|
|
|
hooks = []
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
|
hooks.append(
|
|
m.register_forward_hook(
|
|
functools.partial(stat_input_hook, name=name)))
|
|
|
|
for i in tqdm(range(num_samples), desc="calibrating model"):
|
|
datapoint = dataset['train'][i:i + 1]
|
|
line = copy.copy(datapoint['article'])
|
|
line[0] = line[0] + ' TL;DR: '
|
|
line[0] = line[0].strip()
|
|
line[0] = line[0].replace(" n't", "n't")
|
|
input_ids = tokenizer(line,
|
|
return_tensors="pt",
|
|
max_length=seq_len,
|
|
padding=True,
|
|
truncation=True).input_ids.to(device)
|
|
model(input_ids)
|
|
for h in hooks:
|
|
h.remove()
|
|
return act_scales
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return torch.chunk(v, tp_size)[idx].contiguous()
|
|
else:
|
|
return torch.chunk(v, tp_size, dim=dim)[idx].clone()
|
|
|
|
|
|
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV matrix according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
|
|
return split_v.clone()
|
|
|
|
|
|
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV bias according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
|
|
return split_v.clone()
|
|
|
|
|
|
def split_matrix_tp(v, tensor_parallel, rank, dim):
|
|
return split(v, tensor_parallel, rank, dim=dim)
|
|
|
|
|
|
def get_weight(config, prefix, dtype):
|
|
if config[prefix + '.weight'].dtype != dtype:
|
|
config[prefix + '.weight'].data = config[prefix + '.weight'].to(dtype)
|
|
return config[prefix + '.weight'].detach().cpu()
|
|
|
|
|
|
def get_bias(config, prefix, dtype):
|
|
if config[prefix + '.bias'].dtype != dtype:
|
|
config[prefix + '.bias'].data = config[prefix + '.bias'].to(dtype)
|
|
return config[prefix + '.bias'].detach().cpu()
|
|
|
|
|
|
def get_weight_and_bias(config, prefix, dtype):
|
|
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
|
|
|
|
|
|
def get_tllm_linear_weight(weight,
|
|
prefix,
|
|
bias=None,
|
|
use_weight_only=False,
|
|
plugin_weight_only_quant_type=torch.int8,
|
|
dtype='float32',
|
|
use_gemm_woq_plugin=True,
|
|
postfix='weight',
|
|
quant_scale_name=None):
|
|
results = {}
|
|
if use_weight_only:
|
|
if weight.dim() > 2:
|
|
v = weight.transpose(1, 2).contiguous().clone()
|
|
else:
|
|
v = weight.t().contiguous().clone()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v.cpu(), plugin_weight_only_quant_type)
|
|
if not use_gemm_woq_plugin:
|
|
results[prefix + postfix] = v.to(dtype)
|
|
else:
|
|
results[prefix + postfix] = processed_torch_weights
|
|
if quant_scale_name is not None:
|
|
results[quant_scale_name] = torch_weight_scales
|
|
else:
|
|
results[prefix + 'per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
results[prefix + postfix] = weight.clone()
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def dup_kv_weight(v, num_head, tp_size):
|
|
assert tp_size % num_head == 0
|
|
reps = tp_size // num_head
|
|
head_size = v.shape[0] // num_head
|
|
v = v.reshape(num_head, head_size,
|
|
-1)[:, None, :, :].expand(num_head, reps, head_size,
|
|
v.shape[1])
|
|
return v.reshape(num_head * reps * head_size, -1).clone().detach()
|
|
|
|
|
|
def get_tllm_linear_sq_weight(vals,
|
|
prefix,
|
|
shape,
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=False,
|
|
per_channel=False,
|
|
last_prefix=None,
|
|
bias=None,
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=0,
|
|
cat_dim=0,
|
|
multi_query_mode=False):
|
|
results = {}
|
|
|
|
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
|
|
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
|
|
q_split = np.split(q, tp_size, axis=-1)
|
|
k_split = np.split(k, tp_size, axis=-1)
|
|
v_split = np.split(v, tp_size, axis=-1)
|
|
return [
|
|
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
|
for ii in range(tp_size)
|
|
][cur_rank]
|
|
|
|
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
|
|
|
if per_token:
|
|
if per_channel:
|
|
original_weights = np.array(vals["weight.int8.col"])
|
|
else:
|
|
original_weights = np.array(vals["weight.int8"])
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = np.split(original_weights,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix + 'weight'] = torch.from_numpy(
|
|
cur_weights).t().clone().contiguous()
|
|
if smoother_value is None:
|
|
results[last_prefix] = torch.from_numpy(
|
|
np.array([1.0], dtype=np.float32))
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_w_quant_orig.col"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_w_quant_orig"]
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(vals["scale_w_quant_orig"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
|
np.array(cur_per_channel_value,
|
|
dtype=np.float32).reshape(col_shape)).contiguous()
|
|
else:
|
|
if per_channel:
|
|
original_weights = np.array(vals["weight.int8.col"])
|
|
else:
|
|
original_weights = np.array(vals["weight.int8"])
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = np.split(original_weights,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix + 'weight'] = torch.from_numpy(
|
|
cur_weights).t().clone().contiguous()
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_y_accum_quant.col"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_y_accum_quant"]
|
|
# QKV is always per_channel
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_y_accum_quant"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
|
np.array([cur_per_channel_value],
|
|
dtype=np.float32).reshape(col_shape)).contiguous()
|
|
|
|
results[last_prefix] = torch.from_numpy(
|
|
np.array([vals['scale_x_orig_quant']],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
results[prefix + 'act_scale'] = torch.from_numpy(
|
|
np.array([[vals["scale_y_quant_orig"]]],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
if smoother_value is not None:
|
|
cur_smoother_value = np.split(smoother_value,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
|
smoother_shape).contiguous().to(torch.float32)
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def convert_hf_llama(hf_model,
|
|
mapping,
|
|
vocab_size=32000,
|
|
dtype='float32',
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0,
|
|
use_weight_only=False,
|
|
share_embedding_table=False,
|
|
use_gemm_woq_plugin=False,
|
|
plugin_weight_only_quant_type=torch.int8,
|
|
use_smooth_quant=False,
|
|
per_channel=False,
|
|
per_token=False,
|
|
int8_kv_cache=False,
|
|
act_range=[],
|
|
qkv_para=[],
|
|
smoother=[],
|
|
moe_config=None):
|
|
|
|
weights = {}
|
|
tik = time.time()
|
|
tensor_parallel = mapping.tp_size
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, dtype)
|
|
num_attention_heads = hf_model.config.num_attention_heads
|
|
hidden_size = hf_model.config.hidden_size
|
|
head_size = hidden_size // num_attention_heads
|
|
intermediate_size = hf_model.config.intermediate_size
|
|
num_key_value_heads = getattr(hf_model.config, 'num_key_value_heads',
|
|
num_attention_heads)
|
|
mha_mode = (num_key_value_heads == num_attention_heads)
|
|
layers_range = mapping.pp_layers(hf_model.config.num_hidden_layers)
|
|
|
|
def convert_layer(l):
|
|
prefix = f'model.layers.{l}.'
|
|
tllm_prex = f'transformer.layers.{l - layers_range[0]}.'
|
|
q_weight = get_weight(model_params, prefix + 'self_attn.q_proj', dtype)
|
|
k_weight = get_weight(model_params, prefix + 'self_attn.k_proj', dtype)
|
|
v_weight = get_weight(model_params, prefix + 'self_attn.v_proj', dtype)
|
|
|
|
if not mha_mode:
|
|
if num_key_value_heads < tensor_parallel:
|
|
# duplicate the KV heads up to tensor_parallel
|
|
k_weight = dup_kv_weight(k_weight, num_key_value_heads,
|
|
tensor_parallel)
|
|
v_weight = dup_kv_weight(v_weight, num_key_value_heads,
|
|
tensor_parallel)
|
|
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
|
|
|
wq = split(q_weight, mapping.tp_size, mapping.tp_rank)
|
|
wk = split(k_weight, mapping.tp_size, mapping.tp_rank)
|
|
wv = split(v_weight, mapping.tp_size, mapping.tp_rank)
|
|
|
|
split_v = torch.concat((wq, wk, wv))
|
|
|
|
else:
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
|
|
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
|
|
tensor_parallel, mapping.tp_rank)
|
|
|
|
if prefix + 'self_attn.q_proj.bias' in model_params:
|
|
# only used in Internlm 7B models
|
|
q_bias = get_bias(model_params, prefix + 'self_attn.q_proj', dtype)
|
|
k_bias = get_bias(model_params, prefix + 'self_attn.k_proj', dtype)
|
|
v_bias = get_bias(model_params, prefix + 'self_attn.v_proj', dtype)
|
|
qkv_bias = torch.cat((q_bias, k_bias, v_bias))
|
|
split_bias_v = split_qkv_bias_tp(qkv_bias, num_attention_heads,
|
|
hidden_size, tensor_parallel,
|
|
mapping.tp_rank)
|
|
else:
|
|
split_bias_v = None
|
|
|
|
if use_smooth_quant:
|
|
qkv_weight = qkv_para[prefix + 'self_attn.qkv_proj']
|
|
qkv_out_dim = qkv_weight.shape[1]
|
|
|
|
if not mha_mode:
|
|
local_dim = qkv_weight.shape[0]
|
|
kv_hidden_size = (qkv_weight.shape[-1] - local_dim) // 2
|
|
qkv_weight = qkv_weight.reshape(local_dim,
|
|
local_dim + 2 * kv_hidden_size)
|
|
else:
|
|
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
|
|
|
int8_weights = generate_int8(qkv_weight,
|
|
act_range.get(prefix +
|
|
'self_attn.qkv_proj'),
|
|
is_qkv=True,
|
|
multi_query_mode=bool(not mha_mode))
|
|
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(int8_weights,
|
|
tllm_prex + 'attention.qkv.',
|
|
[1, qkv_out_dim // tensor_parallel],
|
|
tensor_parallel,
|
|
is_qkv=True,
|
|
bias=split_bias_v,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'input_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1,
|
|
multi_query_mode=bool(not mha_mode)))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.',
|
|
split_bias_v, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if int8_kv_cache:
|
|
qkv_y = torch.cat([
|
|
act_range.get(prefix + 'self_attn.q_proj')["y"],
|
|
act_range.get(prefix + 'self_attn.k_proj')["y"],
|
|
act_range.get(prefix + 'self_attn.v_proj')["y"]
|
|
],
|
|
dim=0)
|
|
|
|
int8_kv_scales = qkv_y.max() / 127.
|
|
|
|
kv_cache_weights = {}
|
|
|
|
kv_cache_weights[
|
|
tllm_prex +
|
|
'attention.kv_cache_scaling_factor'] = int8_kv_scales.reshape(
|
|
[1])
|
|
|
|
weights.update(kv_cache_weights)
|
|
|
|
attn_dense_weight = get_weight(model_params,
|
|
prefix + 'self_attn.o_proj', dtype)
|
|
split_v = split_matrix_tp(attn_dense_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
|
|
if prefix + 'self_attn.o_proj.bias' in model_params:
|
|
attn_dense_bias = get_bias(model_params,
|
|
prefix + 'self_attn.o_proj', dtype)
|
|
else:
|
|
attn_dense_bias = None
|
|
if use_smooth_quant:
|
|
attn_dense_weight = attn_dense_weight.t()
|
|
int8_weights = generate_int8(
|
|
attn_dense_weight, act_range.get(prefix + 'self_attn.o_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'attention.dense.', [1, hidden_size],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
bias=attn_dense_bias,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'attention.quantization_scaling_factor',
|
|
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
|
|
smoother_shape=[1, hidden_size // tensor_parallel],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
|
|
attn_dense_bias, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
if moe_config and moe_config.has_moe():
|
|
|
|
rank_experts = list(range(moe_config.num_experts))
|
|
if moe_config.tp_mode == moe_config.ParallelismMode.EXPERT_PARALLEL:
|
|
rank_experts = mapping.ep_experts(moe_config.num_experts)
|
|
for suffix in ["w1", "w2", "w3"]:
|
|
model_params[f'model.layers.{l}.block_sparse_moe.experts.{suffix}.weight'] = \
|
|
torch.stack([model_params[f'model.layers.{l}.block_sparse_moe.experts.{expert}.{suffix}.weight'].detach()
|
|
for expert in rank_experts])
|
|
w3 = model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w3.weight']
|
|
w2 = model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w2.weight']
|
|
w1 = model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w1.weight']
|
|
if moe_config.tp_mode == moe_config.ParallelismMode.TENSOR_PARALLEL:
|
|
w3 = split(w3, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
w2 = split(w2, mapping.tp_size, mapping.tp_rank, dim=2)
|
|
w1 = split(w1, mapping.tp_size, mapping.tp_rank, dim=1)
|
|
|
|
model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w3w1.weight'] = torch.concat(
|
|
[w3, w1], dim=-2)
|
|
|
|
model_params[
|
|
f'model.layers.{l}.block_sparse_moe.experts.w2.weight'] = w2
|
|
|
|
## block_sparse_moe.experts.w2.weight
|
|
moe_experts_w2_weights = get_weight(
|
|
model_params, prefix + 'block_sparse_moe.experts.w2', dtype)
|
|
weights.update(
|
|
get_tllm_linear_weight(moe_experts_w2_weights,
|
|
tllm_prex + 'mlp.experts_weight_2',
|
|
None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type,
|
|
dtype,
|
|
use_gemm_woq_plugin,
|
|
postfix='',
|
|
quant_scale_name=tllm_prex +
|
|
'mlp.experts_scale_2'))
|
|
##block_sparse_moe.experts.w3w1.weight
|
|
moe_experts_w3w1_weights = get_weight(
|
|
model_params, prefix + 'block_sparse_moe.experts.w3w1', dtype)
|
|
weights.update(
|
|
get_tllm_linear_weight(moe_experts_w3w1_weights,
|
|
tllm_prex + 'mlp.experts_weight_1',
|
|
None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type,
|
|
dtype,
|
|
use_gemm_woq_plugin,
|
|
postfix='',
|
|
quant_scale_name=tllm_prex +
|
|
'mlp.experts_scale_1'))
|
|
|
|
moe_experts_gate_weights = get_weight(
|
|
model_params, prefix + 'block_sparse_moe.gate', torch.float32)
|
|
weights.update(
|
|
get_tllm_linear_weight(
|
|
moe_experts_gate_weights.to(torch.float32),
|
|
tllm_prex + 'mlp.router.',
|
|
None,
|
|
False, # Router should never be quantized
|
|
plugin_weight_only_quant_type,
|
|
dtype,
|
|
use_gemm_woq_plugin))
|
|
else:
|
|
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.up_proj',
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_gate_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
if use_smooth_quant:
|
|
mlp_gate_weight = mlp_gate_weight.t()
|
|
int8_weights = generate_int8(
|
|
mlp_gate_weight, act_range.get(prefix + 'mlp.up_proj'))
|
|
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.gate.',
|
|
[1, intermediate_size // tensor_parallel],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.gate.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
mlp_fc_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_fc_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
|
|
if use_smooth_quant:
|
|
mlp_fc_weight = mlp_fc_weight.t() #verified
|
|
int8_weights = generate_int8(
|
|
mlp_fc_weight, act_range.get(prefix + 'mlp.gate_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.fc.',
|
|
[1, intermediate_size // tensor_parallel],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=mapping.tp_rank,
|
|
cat_dim=-1))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
|
|
dtype)
|
|
split_v = split_matrix_tp(mlp_proj_weight,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
|
|
if use_smooth_quant:
|
|
mlp_proj_weight = mlp_proj_weight.t()
|
|
int8_weights = generate_int8(
|
|
mlp_proj_weight, act_range.get(prefix + 'mlp.down_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.proj.', [1, hidden_size],
|
|
tensor_parallel,
|
|
is_qkv=False,
|
|
per_token=per_token,
|
|
per_channel=per_channel,
|
|
last_prefix=tllm_prex +
|
|
'mlp.quantization_scaling_factor',
|
|
smoother_value=smoother[prefix + 'mlp.down_proj'],
|
|
smoother_shape=[
|
|
1, intermediate_size // tensor_parallel
|
|
],
|
|
rank=mapping.tp_rank,
|
|
cat_dim=0))
|
|
else:
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type, dtype,
|
|
use_gemm_woq_plugin))
|
|
|
|
# Layer norms do not use tensor parallelism
|
|
input_ln_weight = get_weight(model_params, prefix + 'input_layernorm',
|
|
dtype)
|
|
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
|
|
|
post_ln_weight = get_weight(model_params,
|
|
prefix + 'post_attention_layernorm', dtype)
|
|
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
|
cur_block_weights = [
|
|
weight_name for weight_name in model_params
|
|
if weight_name.find(prefix) != -1
|
|
]
|
|
for weight_name in cur_block_weights:
|
|
model_params[weight_name] = None
|
|
|
|
for l in layers_range:
|
|
convert_layer(l)
|
|
release_gc()
|
|
|
|
v = get_weight(model_params, 'model.embed_tokens', dtype)
|
|
if hf_model.config.tie_word_embeddings:
|
|
# lm_head.weight has the same weights as embedding
|
|
if mapping.is_last_pp_rank():
|
|
if vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
|
|
pad_width = vocab_size_padded - vocab_size
|
|
|
|
v = torch.from_numpy(
|
|
np.pad(v.detach().cpu().numpy(), ((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = split(v, mapping.tp_size,
|
|
mapping.tp_rank)
|
|
|
|
if use_parallel_embedding:
|
|
v = split_matrix_tp(v,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=sharding_dim)
|
|
|
|
if mapping.is_first_pp_rank():
|
|
weights['transformer.vocab_embedding.weight'] = v
|
|
|
|
# if not use_parallel_embedding:
|
|
# weights['transformer.vocab_embedding.weight'] = embed_w
|
|
# else:
|
|
# assert hf_model.config.vocab_size % tensor_parallel == 0
|
|
# weights['transformer.vocab_embedding.weight'] = split_matrix_tp(
|
|
# embed_w, tensor_parallel, rank
|
|
|
|
lm_head_weights = get_weight(model_params, 'lm_head', dtype)
|
|
|
|
if mapping.is_last_pp_rank():
|
|
if vocab_size % mapping.tp_size != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
|
|
pad_width = vocab_size_padded - vocab_size
|
|
|
|
lm_head_weights = torch.from_numpy(
|
|
np.pad(lm_head_weights.detach().cpu().numpy(),
|
|
((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0))
|
|
weights['lm_head.weight'] = split_matrix_tp(lm_head_weights,
|
|
tensor_parallel,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
ln_f_w = get_weight(model_params, 'model.norm', dtype)
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
def smooth_quant(model,
|
|
model_dir,
|
|
dataset_cache_dir,
|
|
smoothquant: Optional[float] = None):
|
|
assert model is not None
|
|
act_range = {}
|
|
llama_qkv_para = {}
|
|
# smoother for inputs of self_attn.o_proj and mlp.down_proj
|
|
llama_smoother = {}
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
|
|
"TOKENIZERS_PARALLELISM", "false")
|
|
dataset = load_dataset("ccdv/cnn_dailymail",
|
|
'3.0.0',
|
|
cache_dir=dataset_cache_dir)
|
|
|
|
act_range = capture_activation_range(
|
|
model,
|
|
AutoTokenizer.from_pretrained(model_dir,
|
|
trust_remote_code=True,
|
|
use_fast=False,
|
|
padding_side='left'), dataset)
|
|
if smoothquant is not None:
|
|
smooth_llama_model(model, act_range, smoothquant, llama_qkv_para,
|
|
llama_smoother)
|
|
return act_range, llama_qkv_para, llama_smoother
|
|
|
|
|
|
def create_config_from_hugging_face(hf_model,
|
|
dtype,
|
|
mapping,
|
|
quantization: QuantConfig = None,
|
|
override_fields: dict = {}):
|
|
config = {}
|
|
hf_config = AutoConfig.from_pretrained(hf_model, trust_remote_code=True)
|
|
if hf_config.model_type == "llava":
|
|
# LLaVA = Vision model + Llama LLM
|
|
# We load a llava config and use its' text config as llama config
|
|
hf_config = LlavaConfig.from_pretrained(hf_model).text_config
|
|
# TODO: directly assign the hf_config fields to the config dict w/o creating these local vars
|
|
# same for from_meta and from_cli_args
|
|
n_head = hf_config.num_attention_heads
|
|
inter_size = hf_config.intermediate_size
|
|
n_layer = hf_config.num_hidden_layers
|
|
n_embd = hf_config.hidden_size
|
|
n_kv_head = getattr(hf_config, "num_key_value_heads", n_head)
|
|
rms_norm_eps = hf_config.rms_norm_eps
|
|
vocab_size = hf_config.vocab_size
|
|
n_positions = hf_config.max_position_embeddings
|
|
hidden_act = hf_config.hidden_act
|
|
config['rotary_scaling'] = getattr(hf_config, "rope_scaling", None)
|
|
rotary_base = getattr(hf_config, "rope_theta", 10000.0)
|
|
if hf_config.model_type == "mixtral":
|
|
# HF LLaMA-type models are implicitly using gated activation.
|
|
# With our MoE implementation, we must make it explicit
|
|
hidden_act = "swiglu"
|
|
config[
|
|
'moe_normalization_mode'] = MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE
|
|
else:
|
|
config['moe_normalization_mode'] = None
|
|
moe_num_experts = getattr(hf_config, "num_local_experts", 0)
|
|
moe_top_k = getattr(hf_config, "num_experts_per_tok", 0)
|
|
moe_tp_mode = MoeConfig.ParallelismMode.TENSOR_PARALLEL
|
|
architecture = hf_config.architectures[0]
|
|
# VILA model, force to use llama config
|
|
if hf_config.model_type == "llava_llama":
|
|
architecture = "LlamaForCausalLM"
|
|
attn_bias = getattr(hf_config, 'bias', False) or getattr(
|
|
hf_config, 'attention_bias', False)
|
|
|
|
config.update({
|
|
'architecture': architecture,
|
|
'dtype': dtype,
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': n_layer,
|
|
'num_attention_heads': n_head,
|
|
'hidden_size': n_embd,
|
|
'intermediate_size': inter_size,
|
|
'num_key_value_heads': n_kv_head,
|
|
'vocab_size': vocab_size,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': n_positions,
|
|
'hidden_act': hidden_act,
|
|
'rotary_base': rotary_base,
|
|
'norm_epsilon': rms_norm_eps,
|
|
'moe_num_experts': moe_num_experts,
|
|
'moe_top_k': moe_top_k,
|
|
'moe_tp_mode': moe_tp_mode,
|
|
#TODO: should have directly map from the Mapping object to the TRT-LLM checkpoint fields
|
|
'mapping': {
|
|
'world_size': mapping.tp_size * mapping.pp_size,
|
|
'tp_size': mapping.tp_size,
|
|
'pp_size': mapping.pp_size
|
|
},
|
|
'attn_bias': attn_bias,
|
|
})
|
|
config['quantization'] = quantization.asdict()
|
|
config.update(override_fields)
|
|
|
|
moe_config = MoeConfig(config['moe_num_experts'], config['moe_top_k'],
|
|
config['moe_tp_mode'],
|
|
config['moe_normalization_mode']).validate()
|
|
use_weight_only = config['quantization']['quant_algo'] in [
|
|
QuantAlgo.W8A16, QuantAlgo.W4A16
|
|
]
|
|
if use_weight_only and moe_config.has_moe():
|
|
config['quantization']['exclude_modules'].append('router')
|
|
|
|
return config
|
|
|
|
|
|
def from_hugging_face(cls,
|
|
model_dir,
|
|
dtype,
|
|
*,
|
|
mapping,
|
|
quantization: QuantConfig = None,
|
|
load_by_shard=False,
|
|
load_model_on_cpu=False,
|
|
override_fields={},
|
|
skip_loading_weights=False,
|
|
preloaded_model=None):
|
|
''' Create a LLaMAForCausalLM object from give parameters
|
|
'''
|
|
assert model_dir is not None
|
|
if isinstance(model_dir, Path): # some code relies on this as string
|
|
model_dir = str(model_dir)
|
|
|
|
# register VILA model
|
|
if "vila" in model_dir:
|
|
sys.path.append(model_dir + "/../VILA")
|
|
from llava.model import LlavaConfig, LlavaLlamaForCausalLM
|
|
AutoConfig.register("llava_llama", LlavaConfig)
|
|
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
|
|
|
config = create_config_from_hugging_face(model_dir,
|
|
dtype,
|
|
mapping,
|
|
quantization,
|
|
override_fields=override_fields)
|
|
|
|
pretrained_config = PretrainedConfig.from_dict(config)
|
|
pretrained_config.set_rank(mapping.rank) # TODO:remove this hack
|
|
|
|
llama = cls.from_config(pretrained_config)
|
|
if skip_loading_weights:
|
|
return llama
|
|
|
|
model = preloaded_model
|
|
if model is None and not load_by_shard: # when load by shard, no need to create complete hf model
|
|
hf_config = AutoConfig.from_pretrained(model_dir,
|
|
trust_remote_code=True)
|
|
if hf_config.model_type == "llava":
|
|
hf_llava = LlavaForConditionalGeneration.from_pretrained(
|
|
model_dir, torch_dtype="auto")
|
|
model = hf_llava.language_model
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_dir,
|
|
device_map='auto' if not load_model_on_cpu else 'cpu',
|
|
torch_dtype='auto',
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
if load_by_shard:
|
|
weights = load_from_hf_checkpoint(model_dir, mapping, pretrained_config)
|
|
else:
|
|
weights = load_weights_from_hf(config=config,
|
|
mapping=mapping,
|
|
model=model)
|
|
|
|
llama.load(weights)
|
|
return llama
|
|
|
|
|
|
def quantize(dtype,
|
|
model_dir,
|
|
output_dir,
|
|
mapping,
|
|
quantization: QuantConfig,
|
|
*,
|
|
override_fields,
|
|
dataset_cache_dir: Optional[str] = None):
|
|
'''
|
|
Quantize the save the model as TRT-LLM checkpoint to output_dir
|
|
'''
|
|
#TODO: currently only smooth quant and kv cache quantization are supported, needs to support mode quant algorithm calling ammo
|
|
config = create_config_from_hugging_face(model_dir,
|
|
dtype,
|
|
mapping,
|
|
quantization,
|
|
override_fields=override_fields)
|
|
|
|
with open(os.path.join(output_dir, 'config.json'), 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
assert mapping.rank == -1, "You shall call quantize only once in one rank, assert rank==-1 for precaution"
|
|
act_range = {}
|
|
llama_qkv_para = {}
|
|
# smoother for inputs of self_attn.o_proj and mlp.down_proj
|
|
llama_smoother = {}
|
|
model = None
|
|
assert config['quantization']['quant_algo'] == quantization.quant_algo
|
|
int8_kv_cache = quantization.kv_cache_quant_algo == QuantAlgo.INT8
|
|
use_smooth_quant = quantization.quant_algo is not None and quantization.quant_algo.startswith(
|
|
'W8A8_SQ')
|
|
|
|
assert use_smooth_quant or int8_kv_cache, "Call from_hugging_face when there is no quantization"
|
|
if use_smooth_quant:
|
|
assert quantization.smoothquant_val is not None, "A smooth value must be specified when using smooth quant"
|
|
|
|
assert model_dir is not None
|
|
## only load and call smooth quant routine once for all ranks
|
|
hf_config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
|
assert "llava" not in hf_config.model_type, "Smooth quant llava/vila is not supported yet"
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_dir,
|
|
device_map='auto',
|
|
torch_dtype='auto' if not use_smooth_quant else torch.float16,
|
|
trust_remote_code=True)
|
|
act_range, llama_qkv_para, llama_smoother = smooth_quant(
|
|
model, model_dir, dataset_cache_dir, quantization.smoothquant_val)
|
|
|
|
for rank in range(mapping.world_size):
|
|
# To avoid changing the mapping arg in-place, also the given mapping from caller is rank agnostic, since quantize is called from only one rank
|
|
ranked_mapping = Mapping(world_size=mapping.world_size,
|
|
rank=rank,
|
|
tp_size=mapping.tp_size,
|
|
pp_size=mapping.pp_size)
|
|
weights = load_weights_from_hf(
|
|
config=config,
|
|
mapping=ranked_mapping,
|
|
model=model,
|
|
# for smooth quant only
|
|
act_range=act_range,
|
|
llama_qkv_para=llama_qkv_para,
|
|
llama_smoother=llama_smoother,
|
|
)
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
|
|
del weights
|
|
release_gc()
|
|
|
|
|
|
def load_weights_from_hf(*,
|
|
config,
|
|
mapping,
|
|
model,
|
|
act_range={},
|
|
llama_qkv_para={},
|
|
llama_smoother={}):
|
|
#TODO: simplify the parameters here
|
|
|
|
assert model is not None
|
|
plugin_weight_only_quant_type = None # the value does not matter when use_weight_only is False
|
|
quant_algo = config['quantization']['quant_algo']
|
|
if quant_algo == QuantAlgo.W8A16:
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_algo == QuantAlgo.W4A16:
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
|
|
moe_config = MoeConfig(config['moe_num_experts'], config['moe_top_k'],
|
|
config['moe_tp_mode'],
|
|
config['moe_normalization_mode']).validate()
|
|
|
|
use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16]
|
|
use_smooth_quant = quant_algo is not None and quant_algo.startswith(
|
|
'W8A8_SQ')
|
|
per_channel_sq = use_smooth_quant and 'PER_CHANNEL' in quant_algo
|
|
per_token_sq = use_smooth_quant and 'PER_TOKEN' in quant_algo
|
|
use_int8_kv_cache = config['quantization'][
|
|
'kv_cache_quant_algo'] == QuantAlgo.INT8
|
|
weights = convert_hf_llama(
|
|
model,
|
|
mapping,
|
|
vocab_size=config['vocab_size'],
|
|
dtype=config['dtype'],
|
|
use_weight_only=use_weight_only,
|
|
use_gemm_woq_plugin=not config.get('disable_weight_only_quant_plugin',
|
|
False),
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
|
use_parallel_embedding=config.get('use_parallel_embedding', False),
|
|
sharding_dim=config.get('embedding_sharding_dim', 0),
|
|
share_embedding_table=config.get('share_embedding_table', False),
|
|
use_smooth_quant=use_smooth_quant,
|
|
per_channel=per_channel_sq,
|
|
per_token=per_token_sq,
|
|
int8_kv_cache=use_int8_kv_cache,
|
|
act_range=act_range,
|
|
qkv_para=llama_qkv_para,
|
|
smoother=llama_smoother,
|
|
moe_config=moe_config)
|
|
return weights
|