TensorRT-LLMs/tests/hlapi/test_llm_multi_gpu.py
2024-04-16 19:40:08 +08:00

133 lines
4.3 KiB
Python

import os
import sys
import tempfile
import pytest
import torch
from tensorrt_llm.hlapi.llm import LLM, KvCacheConfig, ModelConfig
from tensorrt_llm.hlapi.tokenizer import TransformersTokenizer
from tensorrt_llm.hlapi.utils import get_total_gpu_memory
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.llama.model import LLaMAForCausalLM
try:
from .test_llm import (default_model_name, get_model_path, llama_model_path,
mixtral_model_name, skip_single_gpu,
test_llm_generate_async)
except ImportError:
from test_llm import (default_model_name, get_model_path, llama_model_path,
mixtral_model_name, skip_single_gpu,
test_llm_generate_async)
prompts = ["A B C"]
@pytest.fixture(scope="module")
def engine_from_checkpoint() -> tempfile.TemporaryDirectory:
tokenizer = TransformersTokenizer.from_pretrained(llama_model_path)
assert tokenizer is not None
tp_size = 2
with tempfile.TemporaryDirectory() as ckpt_dir:
for rank in range(tp_size):
mapping = Mapping(world_size=tp_size, tp_size=tp_size, rank=rank)
llama = LLaMAForCausalLM.from_hugging_face(llama_model_path,
mapping=mapping)
llama.save_checkpoint(ckpt_dir, save_config=(rank == 0))
del llama
config = ModelConfig(ckpt_dir)
assert config.parallel_config.tp_size == tp_size
llm = LLM(
config,
tokenizer=tokenizer,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
tmpdir = tempfile.TemporaryDirectory()
llm.save(tmpdir.name)
return tmpdir
@pytest.fixture(scope="module")
@skip_single_gpu
def test_llm_loading_from_ckpt_for_tp2(
engine_from_checkpoint: tempfile.TemporaryDirectory):
config = ModelConfig(engine_from_checkpoint.name)
tokenizer = TransformersTokenizer.from_pretrained(llama_model_path)
llm = LLM(config, tokenizer=tokenizer)
sampling_config = llm.get_default_sampling_config()
assert sampling_config is not None
for output in llm.generate(prompts):
print(output)
assert output.text == "<s> A B C D E F G H I J K L M N O P Q R S T U V W X Y Z\nA B C D E F G H"
@skip_single_gpu
def test_llm_generate_tp2(engine_from_checkpoint):
model_dir = engine_from_checkpoint.name
tokenizer = TransformersTokenizer.from_pretrained(llama_model_path)
config = ModelConfig(model_dir)
config.parallel_config.tp_size = 2
llm = LLM(
config,
tokenizer=tokenizer,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
for output in llm.generate(prompts):
print(output)
@skip_single_gpu
@pytest.mark.parametrize("use_auto_parallel", [True, False],
ids=["enable_auto_parallel", "disable_auto_parallel"])
def test_llm_generate_async_tp2(
use_auto_parallel, engine_from_checkpoint: tempfile.TemporaryDirectory):
model_dir = engine_from_checkpoint.name if not use_auto_parallel else default_model_name
tokenizer = TransformersTokenizer.from_pretrained(llama_model_path)
test_llm_generate_async(
model_dir,
tp_size=2,
use_auto_parallel=use_auto_parallel,
tokenizer=tokenizer,
)
# TODO[chunweiy]: Move mixtral test to the e2e test
def is_memory_enough_for_mixtral():
if torch.cuda.device_count() < 2:
return False
try:
total_memory = get_total_gpu_memory(0) + get_total_gpu_memory(1)
if total_memory >= 160 * 1024**3:
return True
except:
return False
# NOTE: This is not activated in CI due to resource constraints
@skip_single_gpu
@pytest.mark.skipif(not is_memory_enough_for_mixtral(),
reason="The test needs at least 160GB memory, skipping")
def test_llm_generate_mixtral_for_tp2():
config = ModelConfig(get_model_path(mixtral_model_name))
config.parallel_config.tp_size = 2
llm = LLM(
config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4),
)
for output in llm.generate(prompts):
print(output)
if __name__ == '__main__':
test_llm_generate_async_tp2(use_auto_parallel=True)
test_llm_generate_async_tp2(use_auto_parallel=False)