TensorRT-LLMs/tests/model/test_gpt.py
2024-04-16 19:40:08 +08:00

994 lines
42 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import random
import sys
import tempfile
import unittest
from itertools import product
import numpy as np
# isort: off
import torch
# isort: on
from parameterized import parameterized
from transformers import GPT2Config, GPT2LMHeadModel
import tensorrt_llm
from tensorrt_llm import Builder
from tensorrt_llm._utils import str_dtype_to_torch
from tensorrt_llm.functional import RotaryScalingType
from tensorrt_llm.layers import PositionEmbeddingType
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from tensorrt_llm.runtime.generation import _prepare_attention_mask
from tensorrt_llm.runtime.kv_cache_manager import (GenerationSequence,
KVCacheManager)
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
from examples.gpt.convert_checkpoint import convert_hf_gpt
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_fp32_accum_pre_ampere, unittest_name_func
class TestGPT(unittest.TestCase):
def _gen_hf_gpt(self, hidden_act, n_layer, max_length, dtype):
gpt_config = GPT2Config(
activation_function=hidden_act,
n_layer=n_layer,
max_length=max_length,
torch_dtype=dtype,
)
gpt_config.n_kv_head = gpt_config.n_head
hf_gpt = GPT2LMHeadModel(gpt_config).cuda().eval()
return gpt_config, hf_gpt
def _gen_tensorrt_llm_network(self, network, builder, hf_gpt, gpt_config,
batch_size, input_len, output_len, fp16,
gpt_attention_plugin, tensor_parallel,
apply_query_key_layer_scaling,
gather_context_logits,
gather_generation_logits):
dtype = 'float16' if fp16 else 'float32'
config = {
'architecture': 'GPTForCausalLM',
'dtype': dtype,
'num_hidden_layers': gpt_config.n_layer,
'num_attention_heads': gpt_config.n_head,
'num_key_value_heads': gpt_config.n_head,
'hidden_size': gpt_config.n_embd,
'intermediate_size': gpt_config.n_embd * 4,
'norm_epsilon': 1e-5,
'vocab_size': gpt_config.vocab_size,
'position_embedding_type': 'learned_absolute',
'max_position_embeddings': gpt_config.n_positions,
'hidden_act': gpt_config.activation_function,
'mapping': {
'world_size': tensor_parallel,
'tp_size': tensor_parallel,
},
'bias': getattr(gpt_config, 'bias', True),
'apply_query_key_layer_scaling': apply_query_key_layer_scaling,
}
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
weights = convert_hf_gpt(hf_gpt,
gpt_config,
"gpt2",
config.mapping,
dtype=dtype)
tensorrt_llm_gpt = tensorrt_llm.models.GPTForCausalLM(config)
tensorrt_llm_gpt.load(weights)
with net_guard(network):
# Initialize model
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
inputs = tensorrt_llm_gpt.prepare_inputs(
max_batch_size=batch_size,
max_input_len=input_len,
max_seq_len=input_len + output_len,
use_cache=True,
max_beam_width=1,
gather_context_logits=gather_context_logits,
gather_generation_logits=gather_generation_logits)
# Prepare
tensorrt_llm_gpt(**inputs)
return network
def _gen_tensorrt_llm_runtime(self,
log_level,
dtype,
world_size,
rank,
gpt_config,
hf_gpt,
model,
use_plugin,
batch_size,
input_len,
output_len,
use_refit,
fast_building=False,
apply_query_key_layer_scaling=False,
context_fmha_type=ContextFMHAType.disabled,
enable_remove_input_padding=False,
enable_paged_kv_cache=False,
tokens_per_block=128,
gather_context_logits=False,
gather_generation_logits=False):
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
runtime = None
builder = Builder()
fp16 = (dtype == 'float16')
with tempfile.TemporaryDirectory() as tmpdirname:
builder_config = builder.create_builder_config(
name='gpt',
precision=dtype,
timing_cache='model.cache',
tensor_parallel=world_size, # TP only
use_refit=use_refit,
gather_context_logits=gather_context_logits,
gather_generation_logits=gather_generation_logits,
strongly_typed=fp16,
)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if use_plugin:
network.plugin_config.set_gpt_attention_plugin(dtype)
if fast_building:
network.plugin_config.set_gemm_plugin(dtype)
network.plugin_config.set_context_fmha(context_fmha_type)
if enable_remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if enable_paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(tokens_per_block)
self._gen_tensorrt_llm_network(network, builder, hf_gpt, gpt_config,
batch_size, input_len, output_len,
fp16, use_plugin, world_size,
apply_query_key_layer_scaling,
gather_context_logits,
gather_generation_logits)
engine_buffer = builder.build_engine(network, builder_config)
runtime = tensorrt_llm.runtime.generation._Runtime(
engine_buffer, mapping)
return runtime, engine_buffer
@parameterized.expand([("other", False)], name_func=unittest_name_func)
def test_gpt_float32(self, test_partition, use_refit):
model = 'gpt'
log_level = 'error'
dtype = 'float32'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 2
max_length = 2
batch_size = 4
beam_width = 1
seq_len = 128
total_length = seq_len + max_length
use_plugin = False
gpt_config, hf_gpt = self._gen_hf_gpt(hidden_act, n_layer, max_length,
dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
use_plugin, batch_size, seq_len, max_length, use_refit)
# compare context
pad_token_id = 50256
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
ctx_ids[0][-1] = pad_token_id
ctx_ids[1][-3:] = pad_token_id
ctx_ids[2][-5:] = pad_token_id
ctx_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
ctx_host_context_lengths = ctx_context_lengths.cpu()
ctx_host_request_types = torch.tensor([0] * batch_size,
dtype=torch.int32,
device='cpu')
ctx_position_ids = torch.tensor(range(seq_len),
dtype=torch.int32).reshape([
1, seq_len
]).expand([batch_size, seq_len]).cuda()
ctx_last_token_ids = ctx_context_lengths.clone()
ctx_attention_mask = _prepare_attention_mask(ctx_ids)
cache_indirections = [
torch.full((
batch_size,
beam_width,
total_length,
),
0,
dtype=torch.int32,
device='cuda'),
torch.full((
batch_size,
beam_width,
total_length,
),
0,
dtype=torch.int32,
device='cuda')
] # ping-pong buffers
ctx_shape = {
'input_ids': ctx_ids.shape,
'position_ids': ctx_position_ids.shape,
'context_lengths': ctx_context_lengths.shape,
'host_context_lengths': ctx_host_context_lengths.shape,
'last_token_ids': ctx_last_token_ids.shape,
'attention_mask': ctx_attention_mask.shape,
'host_request_types': ctx_host_request_types.shape,
'cache_indirection': cache_indirections[0].shape,
}
ctx_buffer = {
'input_ids': ctx_ids,
'position_ids': ctx_position_ids,
'context_lengths': ctx_context_lengths,
'host_context_lengths': ctx_host_context_lengths,
'last_token_ids': ctx_last_token_ids,
'attention_mask': ctx_attention_mask,
'host_request_types': ctx_host_request_types,
'cache_indirection': cache_indirections[0],
}
for i in range(gpt_config.n_layer):
shape = (batch_size, 2, gpt_config.n_head, 0,
gpt_config.n_embd // gpt_config.n_head)
past_buffer = torch.zeros((1, ),
dtype=str_dtype_to_torch(dtype),
device='cuda')
ctx_shape.update({
f'past_key_value_{i}': shape,
})
shape = (batch_size, 2, gpt_config.n_head, seq_len,
gpt_config.n_embd // gpt_config.n_head)
ctx_buffer.update({
f'past_key_value_{i}':
past_buffer,
f'present_key_value_{i}':
torch.zeros(shape,
dtype=str_dtype_to_torch(dtype),
device='cuda'),
})
context = runtime.ctx_context
runtime._set_shape(context, ctx_shape)
runtime._set_buffer(context, ctx_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = ctx_buffer['logits']
with torch.no_grad():
hf_outputs = hf_gpt.forward(ctx_ids,
attention_mask=ctx_attention_mask)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-2)
for i in range(gpt_config.n_layer):
res_present_key_value = ctx_buffer[f'present_key_value_{i}']
ref_present_key, ref_present_value = hf_outputs.past_key_values[i]
past_key_value_tensor = res_present_key_value.permute(1, 0, 2, 3, 4)
key, value = past_key_value_tensor.chunk(2)
head_size = gpt_config.n_embd // gpt_config.n_head
key = key.to(torch.float32).reshape(batch_size, gpt_config.n_head,
seq_len, head_size)
value = value.reshape(batch_size, gpt_config.n_head, seq_len,
head_size)
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
key.cpu().numpy(),
atol=1e-2)
np.testing.assert_allclose(ref_present_value.cpu().numpy(),
value.cpu().numpy(),
atol=1e-2)
# compare generation
gen_id = torch.randint(100, (batch_size, 1)).int().cuda()
gen_context_lengths = ctx_context_lengths.clone()
gen_host_context_lengths = ctx_host_context_lengths.clone()
gen_host_request_types = torch.tensor([1] * batch_size,
dtype=torch.int32,
device='cpu')
gen_position_ids = torch.ones_like(gen_id).cuda() * seq_len
gen_last_token_ids = torch.zeros_like(gen_context_lengths).cuda()
gen_attention_mask = torch.cat([
ctx_attention_mask,
ctx_attention_mask.new_ones((ctx_attention_mask.shape[0], 1))
],
dim=-1)
step1_shape = {
'input_ids': gen_id.shape,
'context_lengths': gen_context_lengths.shape,
'host_context_lengths': gen_host_context_lengths.shape,
'host_request_types': gen_host_request_types.shape,
'position_ids': gen_position_ids.shape,
'last_token_ids': gen_last_token_ids.shape,
'attention_mask': gen_attention_mask.shape,
'cache_indirection': cache_indirections[1].shape,
}
step1_buffer = {
'input_ids': gen_id,
'context_lengths': gen_context_lengths.contiguous(),
'host_context_lengths': gen_host_context_lengths.contiguous(),
'host_request_types': gen_host_request_types.contiguous(),
'position_ids': gen_position_ids.contiguous(),
'last_token_ids': gen_last_token_ids.contiguous(),
'attention_mask': gen_attention_mask.contiguous(),
'cache_indirection': cache_indirections[1].contiguous(),
}
for i in range(gpt_config.n_layer):
shape = (batch_size, 2, gpt_config.n_head, seq_len,
gpt_config.n_embd // gpt_config.n_head)
step1_shape.update({
f'past_key_value_{i}': shape,
})
step1_buffer.update({
f'past_key_value_{i}':
ctx_buffer[f'present_key_value_{i}'],
})
context = runtime.context_1
runtime._set_shape(context, step1_shape)
runtime._set_buffer(context, step1_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = step1_buffer['logits']
with torch.no_grad():
hf_outputs = hf_gpt.forward(
gen_id,
attention_mask=gen_attention_mask,
past_key_values=hf_outputs.past_key_values,
use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-2)
for i in range(gpt_config.n_layer):
res_present_key_value = step1_buffer[f'present_key_value_{i}']
ref_present_key, ref_present_value = hf_outputs.past_key_values[i]
past_key_value_tensor = res_present_key_value.permute(1, 0, 2, 3, 4)
key, value = past_key_value_tensor.chunk(2)
head_size = gpt_config.n_embd // gpt_config.n_head
key = key.reshape(batch_size, gpt_config.n_head, seq_len + 1,
head_size)
value = value.reshape(batch_size, gpt_config.n_head, seq_len + 1,
head_size)
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
key.cpu().numpy(),
atol=1e-2)
np.testing.assert_allclose(ref_present_value.cpu().numpy(),
value.cpu().numpy(),
atol=1e-2)
def load_test_cases():
test_cases = list(
product([False, True], [False, True], [False, True], [
ContextFMHAType.disabled, ContextFMHAType.enabled,
ContextFMHAType.enabled_with_fp32_acc
], [False, True], [False, True], [False, True], [False, True]))
# split test cases into 4 partitions
test_cases = [(f"partition{int(i % 4)}", ) + case
for i, case in enumerate(test_cases)]
return test_cases
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
def test_gpt_plugin(self, test_partition, use_refit, fast_building,
apply_query_key_layer_scaling, context_fmha_type,
enable_remove_input_padding, enable_paged_kv_cache,
gather_context_logits, gather_generation_logits):
# inflight batching mode only works with remove_input_padding and paged_kv_cache
use_in_flight_batching = enable_remove_input_padding and enable_paged_kv_cache and not (
gather_context_logits or gather_generation_logits)
# Skip tests that are not supported in pre-ampere architecture
skip_fp32_accum_pre_ampere(context_fmha_type)
torch.manual_seed(0)
random.seed(0)
model = 'gpt'
log_level = 'error'
dtype = 'float16'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 1
max_length = 2
batch_size = 4
beam_width = 1
seq_len = 128
total_length = seq_len + max_length
use_plugin = True
tokens_per_block = 128
gpt_config, hf_gpt = self._gen_hf_gpt(hidden_act, n_layer,
seq_len + max_length, dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
use_plugin, batch_size, seq_len, max_length, use_refit,
fast_building, apply_query_key_layer_scaling, context_fmha_type,
enable_remove_input_padding, enable_paged_kv_cache,
tokens_per_block, gather_context_logits, gather_generation_logits)
key_value_cache_buffers = []
value_cache_buffers = []
head_size = gpt_config.n_embd // gpt_config.n_head
if enable_paged_kv_cache:
num_blocks = batch_size * beam_width * math.ceil(
total_length / tokens_per_block)
cache_shape = (
num_blocks,
gpt_config.n_layer,
2,
gpt_config.n_head,
tokens_per_block,
head_size,
)
key_value_cache_buffers.append(
torch.zeros(cache_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device='cuda'))
else:
cache_shape = (
batch_size,
2,
gpt_config.n_head,
total_length,
head_size,
)
for _ in range(gpt_config.n_layer):
key_value_cache_buffers.append(
torch.zeros(
cache_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device='cuda'))
for _ in range(gpt_config.n_layer):
value_cache_buffers.append(
torch.zeros((
batch_size,
gpt_config.n_head,
total_length,
head_size,
),
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device='cuda'))
cache_indirections = [
torch.full((
batch_size,
beam_width,
total_length,
),
0,
dtype=torch.int32,
device='cuda'),
torch.full((
batch_size,
beam_width,
total_length,
),
0,
dtype=torch.int32,
device='cuda')
] # ping-pong buffers
if enable_paged_kv_cache:
max_blocks_per_seq = math.ceil(total_length / tokens_per_block)
num_blocks = batch_size * beam_width * max_blocks_per_seq
block_size = gpt_config.n_head * tokens_per_block * head_size
kv_cache_manager = KVCacheManager(
num_layers=gpt_config.n_layer,
num_blocks=num_blocks,
block_size=block_size,
tokens_per_block=tokens_per_block,
max_blocks_per_seq=max_blocks_per_seq,
max_attention_window_size=total_length,
sink_token_len=0,
beam_width=beam_width)
host_kv_cache_pool_pointers = torch.tensor(
[key_value_cache_buffers[0].data_ptr(), 0], dtype=torch.int64)
# Add sequences to the manager
for bi in range(batch_size):
generation_sequence = GenerationSequence(seq_idx=bi,
batch_idx=bi)
kv_cache_manager.add_sequence(generation_sequence, seq_len)
# Pre allocate the kv cache for the generated tokens.
kv_cache_manager.step([False] * batch_size)
def run_engine(context,
input_ids,
context_lengths,
host_request_types,
position_ids,
last_token_ids,
cache_indirection,
host_past_key_value_lengths,
host_max_attention_window_sizes,
host_sink_token_length,
sequence_length=None,
host_context_lengths=None):
ctx_buffer = {
'input_ids': input_ids,
'context_lengths': context_lengths,
'host_request_types': host_request_types,
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'cache_indirection': cache_indirection,
'host_past_key_value_lengths': host_past_key_value_lengths,
'sequence_length': sequence_length,
'host_sink_token_length': host_sink_token_length,
}
assert host_request_types is not None
if enable_remove_input_padding:
assert host_context_lengths is not None, "host_context_lengths is required for ragged input"
ctx_buffer['host_context_lengths'] = host_context_lengths
if enable_paged_kv_cache:
assert beam_width == 1
# for beam_width > 1 the argument must be '1' in ctx phase and 'beam_width' in gen phase
host_kv_cache_block_offsets = kv_cache_manager.get_block_offsets(
beam_width=1)
kv_cache_block_offsets = host_kv_cache_block_offsets.to('cuda')
shape = kv_cache_block_offsets.shape
shape = [shape[0], shape[1] * shape[2], *shape[3:]]
ctx_buffer[
f'kv_cache_block_offsets'] = kv_cache_block_offsets.reshape(
shape).contiguous()
ctx_buffer[
f'host_kv_cache_block_offsets'] = host_kv_cache_block_offsets.reshape(
shape).contiguous()
ctx_buffer[
f'host_kv_cache_pool_pointers'] = host_kv_cache_pool_pointers.contiguous(
)
ctx_buffer[
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
else:
for i in range(gpt_config.n_layer):
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[
i]
ctx_buffer[
f'present_key_value_{i}'] = key_value_cache_buffers[i]
ctx_buffer[
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
ctx_shape = {
key: buffer.shape
for key, buffer in ctx_buffer.items()
}
runtime._set_shape(context, ctx_shape)
runtime._set_buffer(context, ctx_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = ctx_buffer['logits']
return res
hf_outputs = None
step0_ids = None
step1_ids = None
def compare_context(run_ref_only=False):
nonlocal step0_ids
step0_ids = torch.randint(
100, (batch_size,
seq_len)).int().cuda() if step0_ids is None else step0_ids
ctx_ids = step0_ids.clone()
ctx_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
ctx_position_ids = torch.tensor(range(seq_len),
dtype=torch.int32).reshape([
1, seq_len
]).expand([batch_size,
seq_len]).cuda()
ctx_last_token_ids = ctx_context_lengths.clone()
nonlocal hf_outputs
with torch.no_grad():
hf_outputs = hf_gpt.forward(ctx_ids)
torch.cuda.synchronize()
ref = hf_outputs.logits
if run_ref_only:
return ref[:, -1, :]
if enable_remove_input_padding:
ctx_ids = ctx_ids.view([batch_size * seq_len])
ctx_position_ids = ctx_position_ids.view([batch_size * seq_len])
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids,
dim=0).int()
host_max_attention_window_sizes = torch.tensor([total_length] *
gpt_config.n_layer,
dtype=torch.int32)
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
host_context_lengths = ctx_context_lengths.cpu(
) if enable_remove_input_padding else None
host_request_types = torch.tensor([0 for i in range(batch_size)],
dtype=torch.int32).cpu()
host_past_key_value_lengths = ctx_context_lengths.detach().clone(
).cpu()
# We need sequence_lengths start as context_lengths for step 0 (context),
# and it will be added one after each step.
sequence_length = ctx_context_lengths.detach().clone()
res = run_engine(
context=runtime.ctx_context,
input_ids=ctx_ids,
context_lengths=ctx_context_lengths,
position_ids=ctx_position_ids,
last_token_ids=ctx_last_token_ids,
cache_indirection=cache_indirections[0],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
host_sink_token_length=host_sink_token_length,
sequence_length=sequence_length,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types)
if gather_context_logits:
np.testing.assert_allclose(ref.cpu().numpy().flatten(),
res.cpu().numpy().flatten(),
atol=1e-1)
else:
np.testing.assert_allclose(ref[:, -1, :].cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
def compare_generation(run_ref_only=False):
step = 1
nonlocal step1_ids
step1_ids = torch.randint(
100, (batch_size,
1)).int().cuda() if step1_ids is None else step1_ids
gen_ids = step1_ids.clone()
gen_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
gen_position_ids = torch.ones_like(gen_ids).int().cuda() * seq_len
gen_last_token_ids = torch.zeros_like(
gen_context_lengths).int().cuda()
nonlocal hf_outputs
with torch.no_grad():
hf_outputs = hf_gpt.forward(
gen_ids,
past_key_values=hf_outputs.past_key_values,
use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
if run_ref_only:
return ref
if enable_remove_input_padding:
gen_ids = gen_ids.view([batch_size])
gen_position_ids = gen_position_ids.view([batch_size])
gen_last_token_ids = torch.ones_like(
gen_context_lengths).int().cuda()
gen_last_token_ids = torch.cumsum(gen_last_token_ids,
dim=0).int()
host_past_key_value_lengths = torch.tensor([seq_len + step - 1] *
batch_size,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([seq_len + step] *
gpt_config.n_layer,
dtype=torch.int32)
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
host_context_lengths = gen_context_lengths.cpu(
) if enable_remove_input_padding else None
host_request_types = torch.tensor([1 for i in range(batch_size)],
dtype=torch.int32).cpu()
# For step 1, the sequence_lengths = context_lengths + 1.
sequence_length = torch.add(gen_context_lengths.detach().clone(), 1)
res = run_engine(
context=runtime.context_1,
input_ids=gen_ids,
context_lengths=gen_context_lengths,
position_ids=gen_position_ids,
last_token_ids=gen_last_token_ids,
cache_indirection=cache_indirections[1],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
host_sink_token_length=host_sink_token_length,
sequence_length=sequence_length,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types)
np.testing.assert_allclose(ref.cpu().numpy().flatten(),
res.cpu().numpy().flatten(),
atol=1e-1)
def compare_mixing_context_and_generation_phases():
num_context_input = 2
assert batch_size >= num_context_input
num_generation_input = batch_size - num_context_input
# retrieve the reference output
ref_ctx_out = compare_context(True)[:num_context_input, :]
ref_gen_out = compare_generation(True)[num_context_input:, :]
ref_out = torch.cat([ref_ctx_out, ref_gen_out], dim=0)
ref_ctx_out = None
ref_gen_out = None
# compare_context()
# prepare the inputs for plugin-based gpt
assert step0_ids is not None and step1_ids is not None
input_ids = torch.cat([
step0_ids[:num_context_input, :].view(
(-1, )), step1_ids[num_context_input:].view((-1, ))
],
dim=0)
input_ids = input_ids.view((-1, ))
ctx_position_ids = torch.tensor(
range(seq_len), dtype=torch.int32).reshape(
(1, seq_len)).expand([num_generation_input,
seq_len]).cuda()
gen_position_ids = torch.ones_like(
step1_ids[num_context_input:].view(
(-1, ))).int().cuda() * seq_len
position_ids = torch.cat(
[ctx_position_ids.view((-1, )), gen_position_ids], dim=0).view(
(-1, ))
input_lengths = torch.tensor([seq_len] * num_context_input +
[1] * num_generation_input,
dtype=torch.int32).cuda()
gen_last_token_ids = torch.cumsum(input_lengths, dim=0).int().cuda()
# scalar of max_key_value_length for in-flight batching case
host_past_key_value_lengths = torch.tensor(
[0] * num_context_input + [seq_len] * num_generation_input,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([total_length] *
gpt_config.n_layer,
dtype=torch.int32)
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
context_lengths = torch.tensor([seq_len] * batch_size,
dtype=torch.int32).cuda()
if enable_remove_input_padding:
host_context_lengths = context_lengths.cpu()
host_request_types = torch.tensor([0] * num_context_input +
[1] * num_generation_input,
dtype=torch.int32).cpu()
# The sequence_lengths = context_lengths + step for generation stage.
sequence_length = torch.tensor([seq_len] * num_context_input +
[seq_len + 1] * num_generation_input,
dtype=torch.int32).cuda()
res = run_engine(
context=runtime.context_1,
input_ids=input_ids,
context_lengths=context_lengths,
position_ids=position_ids,
last_token_ids=gen_last_token_ids,
cache_indirection=cache_indirections[0],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
host_sink_token_length=host_sink_token_length,
sequence_length=sequence_length,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types,
)
np.testing.assert_allclose(ref_out.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
# Main logics
compare_context()
compare_generation()
# Only inflight batching mode could accept the mixture of requests from both context and generation phases
if use_in_flight_batching:
compare_mixing_context_and_generation_phases()
@parameterized.expand([("other", False, False), ("other", False, True)],
name_func=unittest_name_func)
def test_greedy_search_float32(self, test_partition, use_refit, streaming):
model = 'gpt'
log_level = 'error'
dtype = 'float32'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 2
max_new_tokens = 1
batch_size = 4
seq_len = 128
use_plugin = False
do_sample = False
early_stoppping = False
num_beams = 1
num_beam_groups = 1
temperature = 1
top_k = 0
top_p = 0.0
length_penalty = 1
repetition_penalty = 1
gpt_config, hf_gpt = self._gen_hf_gpt(hidden_act, n_layer,
max_new_tokens, dtype)
runtime, engine_buffer = self._gen_tensorrt_llm_runtime(
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
use_plugin, batch_size, seq_len, max_new_tokens, use_refit)
model_config = ModelConfig(max_batch_size=batch_size,
max_beam_width=num_beams,
vocab_size=gpt_config.vocab_size,
num_layers=gpt_config.n_layer,
num_heads=gpt_config.n_head,
num_kv_heads=gpt_config.n_head,
hidden_size=gpt_config.n_embd,
gpt_attention_plugin=False,
dtype=dtype)
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, mapping)
pad_token_id = 50256
eos_token_id = 50257
sampling_config = SamplingConfig(end_id=eos_token_id,
pad_id=pad_token_id,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty)
input_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
input_ids[0][-1] = pad_token_id
input_ids[1][-3:] = pad_token_id
input_ids[2][-5:] = pad_token_id
input_lengths = torch.ones(
(batch_size)).type(torch.int32).cuda() * seq_len
decoder.setup(batch_size,
max_context_length=seq_len,
max_new_tokens=max_new_tokens,
beam_width=num_beams)
if streaming:
output_ids_gen = decoder.decode(input_ids,
input_lengths,
sampling_config,
streaming=True)
for output_ids in output_ids_gen:
pass
else:
output_ids = decoder.decode(input_ids, input_lengths,
sampling_config)
#TODO: change to actual ragged tensor after GPT plugin supports it
output_ids_x = decoder.decode(input_ids, input_lengths, sampling_config)
# works because all requests in the batch has same
# TODO: enable this when GPT Plugin attention works
# output_ids_y = decoder.decode_batch([t[:input_lengths[i]] for i, t in enumerate(torch.split(input_ids, 1, dim=0))], sampling_config)
torch.cuda.synchronize()
torch.testing.assert_close(output_ids, output_ids_x)
res = output_ids.squeeze()
res = res[:, -max_new_tokens:]
ref_output_ids = hf_gpt.generate(input_ids,
do_sample=do_sample,
early_stopping=early_stoppping,
num_beams=num_beams,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beam_groups=num_beam_groups,
max_new_tokens=max_new_tokens,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id)
torch.cuda.synchronize()
ref = ref_output_ids[:, -max_new_tokens:]
np.testing.assert_allclose(ref.cpu().numpy(), res.cpu().numpy())
@parameterized.expand(["other"], name_func=unittest_name_func)
def test_rope_scaling_is_set_in_attention(self, test_partition):
num_layers = 2
position_embedding_type = 'rope_gpt_neox'
rotary_embedding_percentage = 0.3
rotary_base = 99999.1
rotary_scaling = {"type": "linear", "factor": 2.72}
config = {
'architecture': 'GPTForCausalLM',
'dtype': 'float16',
'num_hidden_layers': num_layers,
'num_attention_heads': 4,
'hidden_size': 128,
'vocab_size': 256,
'max_position_embeddings': 1024,
'hidden_act': 'gelu',
'position_embedding_type': position_embedding_type,
'rotary_pct': rotary_embedding_percentage,
'rotary_base': rotary_base,
'rotary_scaling': rotary_scaling,
}
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
tensorrt_llm_gpt = tensorrt_llm.models.GPTForCausalLM(config)
for layer_i in range(num_layers):
assert tensorrt_llm_gpt.transformer.layers[
layer_i].attention.rotary_embedding_base == rotary_base
assert tensorrt_llm_gpt.transformer.layers[
layer_i].attention.rotary_embedding_scale == rotary_scaling[
"factor"]
assert tensorrt_llm_gpt.transformer.layers[
layer_i].attention.rotary_embedding_scale_type == RotaryScalingType.linear
assert tensorrt_llm_gpt.transformer.layers[
layer_i].attention.position_embedding_type == PositionEmbeddingType.rope_gpt_neox
if __name__ == '__main__':
unittest.main()