mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
692 lines
24 KiB
C++
692 lines
24 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "tensorrt_llm/batch_manager/GptManager.h"
|
|
|
|
#include "tensorrt_llm/batch_manager/inferenceRequest.h"
|
|
#include "tensorrt_llm/batch_manager/namedTensor.h"
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/common/mpiUtils.h"
|
|
#include "tensorrt_llm/common/stringUtils.h"
|
|
#include "tensorrt_llm/plugins/api/tllmPlugin.h"
|
|
#include "tensorrt_llm/runtime/tllmLogger.h"
|
|
|
|
#include <chrono>
|
|
#include <cxxopts.hpp>
|
|
#include <iostream>
|
|
#include <nlohmann/json.hpp>
|
|
#include <string>
|
|
|
|
using namespace tensorrt_llm::batch_manager;
|
|
using namespace tensorrt_llm::runtime;
|
|
using namespace tensorrt_llm::mpi;
|
|
|
|
namespace tc = tensorrt_llm::common;
|
|
namespace trt = nvinfer1;
|
|
|
|
// Class holding all infos regarding a single work item.
|
|
// This includes the original request, associated response factor
|
|
// and state.
|
|
class WorkItem
|
|
{
|
|
public:
|
|
WorkItem(std::shared_ptr<InferenceRequest> ir, uint64_t requestId)
|
|
: mInferenceRequest(ir)
|
|
, mRequestId(requestId)
|
|
{
|
|
}
|
|
|
|
~WorkItem() {}
|
|
|
|
uint64_t requestId() const
|
|
{
|
|
return mRequestId;
|
|
}
|
|
|
|
std::shared_ptr<InferenceRequest> getInferenceRequest() const
|
|
{
|
|
return mInferenceRequest;
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<InferenceRequest> mInferenceRequest;
|
|
uint64_t mRequestId;
|
|
};
|
|
|
|
/// @brief Thread-safe queue of work items
|
|
class WorkItemsQueue
|
|
{
|
|
public:
|
|
void clear()
|
|
{
|
|
std::lock_guard<std::mutex> lk(mMutex);
|
|
mPendingWorkItems.clear();
|
|
mPendingWorkItemsReqIds.clear();
|
|
mInProgressWorkItems.clear();
|
|
}
|
|
|
|
// Note: this function only be called under a lock
|
|
bool hasInProgressReqId(const uint64_t reqId) const
|
|
{
|
|
return (mInProgressWorkItems.find(reqId) != mInProgressWorkItems.end());
|
|
}
|
|
|
|
// Note: this function only be called under a lock
|
|
bool hasPendingReqId(const uint64_t reqId) const
|
|
{
|
|
return (mPendingWorkItemsReqIds.find(reqId) != mPendingWorkItemsReqIds.end());
|
|
}
|
|
|
|
bool empty() const
|
|
{
|
|
return mPendingWorkItems.empty() && mInProgressWorkItems.empty() && mPendingWorkItemsReqIds.empty();
|
|
}
|
|
|
|
/// @brief Add a new work item to the queue
|
|
/// Throws an error if requestId already exists
|
|
|
|
void push(std::shared_ptr<InferenceRequest> request, uint64_t requestId)
|
|
{
|
|
std::lock_guard<std::mutex> lk(mMutex);
|
|
TLLM_CHECK_WITH_INFO(!hasInProgressReqId(requestId) && !hasPendingReqId(requestId),
|
|
"requestId %lu is already in progress, request is ignored.", requestId);
|
|
|
|
auto workItem = std::make_shared<WorkItem>(request, requestId);
|
|
mPendingWorkItems.push_back(workItem);
|
|
mPendingWorkItemsReqIds.insert(workItem->requestId());
|
|
}
|
|
|
|
/// @brief Get a new work item from the queue, and move it to the list of
|
|
/// in progress work items if it hasn't been stopped
|
|
/// @return A tuple of the workItem and a boolean flag indicating if the work item
|
|
/// has been marked in progress
|
|
std::tuple<std::shared_ptr<WorkItem>, bool> pop()
|
|
{
|
|
std::lock_guard<std::mutex> lk(mMutex);
|
|
|
|
auto workItem = mPendingWorkItems.front();
|
|
mPendingWorkItems.pop_front();
|
|
mPendingWorkItemsReqIds.erase(workItem->requestId());
|
|
|
|
bool markedInProgress;
|
|
mInProgressWorkItems.emplace(std::make_pair(workItem->requestId(), workItem));
|
|
markedInProgress = true;
|
|
|
|
return {workItem, markedInProgress};
|
|
}
|
|
|
|
size_t numPendingWorkItems() const
|
|
{
|
|
std::lock_guard<std::mutex> lk(mMutex);
|
|
return mPendingWorkItems.size();
|
|
}
|
|
|
|
size_t numInProgressWorkItems() const
|
|
{
|
|
std::lock_guard<std::mutex> lk(mMutex);
|
|
return mInProgressWorkItems.size();
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return numPendingWorkItems() + numInProgressWorkItems();
|
|
}
|
|
|
|
/// @brief Mark a request as being finished
|
|
/// @param requestId
|
|
void markFinished(const uint64_t requestId)
|
|
{
|
|
std::lock_guard<std::mutex> lk(mMutex);
|
|
if (hasInProgressReqId(requestId))
|
|
{
|
|
mInProgressWorkItems.erase(requestId);
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Queue of work items
|
|
std::list<std::shared_ptr<WorkItem>> mPendingWorkItems;
|
|
/// requestIds of work items in the queue
|
|
std::set<uint64_t> mPendingWorkItemsReqIds;
|
|
|
|
/// work items currently in progress
|
|
std::unordered_map<uint64_t, std::shared_ptr<WorkItem>> mInProgressWorkItems;
|
|
|
|
mutable std::mutex mMutex;
|
|
};
|
|
|
|
struct BenchInfo
|
|
{
|
|
BenchInfo() {}
|
|
|
|
BenchInfo(int _inputLength, int _outputLength, std::chrono::time_point<std::chrono::steady_clock> _start)
|
|
: inputLength(_inputLength)
|
|
, outputLength(_outputLength)
|
|
, start(_start)
|
|
{
|
|
}
|
|
|
|
int inputLength;
|
|
int outputLength;
|
|
std::chrono::time_point<std::chrono::steady_clock> start;
|
|
std::chrono::time_point<std::chrono::steady_clock> end;
|
|
float latency; // millisecond
|
|
};
|
|
|
|
class Recorder
|
|
{
|
|
public:
|
|
Recorder() {}
|
|
|
|
void initialize()
|
|
{
|
|
mStart = std::chrono::steady_clock::now();
|
|
}
|
|
|
|
void finalize()
|
|
{
|
|
mEnd = std::chrono::steady_clock::now();
|
|
}
|
|
|
|
void recordStart(std::shared_ptr<InferenceRequest> request, uint64_t requestId)
|
|
{
|
|
auto const inputLength = request->getInputIds()->getSize();
|
|
auto const maxNewTokens = request->getMaxNewTokensNamed();
|
|
auto const& outputLengthTensor = maxNewTokens.tensor;
|
|
TLLM_CHECK_WITH_INFO(outputLengthTensor != nullptr && outputLengthTensor->getSize() > 0,
|
|
"Undefined scalar vector for %s", maxNewTokens.name.c_str());
|
|
auto const outputLength = *bufferCast<SizeType>(*outputLengthTensor);
|
|
auto const start = std::chrono::steady_clock::now();
|
|
mRequestBenchInfos[requestId] = BenchInfo(inputLength, outputLength, start);
|
|
}
|
|
|
|
void recordEnd(uint64_t requestId)
|
|
{
|
|
mRequestBenchInfos[requestId].end = std::chrono::steady_clock::now();
|
|
mRequestBenchInfos[requestId].latency = std::chrono::duration<float, std::milli>(
|
|
mRequestBenchInfos[requestId].end - mRequestBenchInfos[requestId].start)
|
|
.count();
|
|
}
|
|
|
|
void calculateMetrics()
|
|
{
|
|
mNumSamples = mRequestBenchInfos.size();
|
|
mTotalLatency = std::chrono::duration<float, std::milli>(mEnd - mStart).count();
|
|
mSeqThroughput = mNumSamples / (mTotalLatency / 1000);
|
|
mAvgSeqLatency = 0;
|
|
int totalOutputTokens = 0;
|
|
for (auto reqInfo : mRequestBenchInfos)
|
|
{
|
|
mAvgSeqLatency += reqInfo.second.latency;
|
|
totalOutputTokens += reqInfo.second.outputLength;
|
|
}
|
|
mAvgSeqLatency /= mNumSamples;
|
|
mTokenThroughput = totalOutputTokens / (mTotalLatency / 1000);
|
|
}
|
|
|
|
void report()
|
|
{
|
|
printf("[BENCHMARK] num_samples(ms) %d\n", mNumSamples);
|
|
printf("[BENCHMARK] total_latency(ms) %.2f\n", mTotalLatency);
|
|
printf("[BENCHMARK] seq_throughput(seq/sec) %.2f\n", mSeqThroughput);
|
|
printf("[BENCHMARK] avg_sequence_latency(ms) %.2f\n", mAvgSeqLatency);
|
|
printf("[BENCHMARK] token_throughput(token/sec) %.2f\n", mTokenThroughput);
|
|
}
|
|
|
|
private:
|
|
std::unordered_map<uint64_t, BenchInfo> mRequestBenchInfos;
|
|
|
|
std::chrono::time_point<std::chrono::steady_clock> mStart;
|
|
std::chrono::time_point<std::chrono::steady_clock> mEnd;
|
|
int mNumSamples;
|
|
float mTotalLatency;
|
|
float mSeqThroughput;
|
|
float mAvgSeqLatency;
|
|
float mTokenThroughput;
|
|
}; // class Recorder
|
|
|
|
class GptServer
|
|
{
|
|
public:
|
|
GptServer(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType, int32_t maxBeamWidth,
|
|
batch_scheduler::SchedulerPolicy schedulerPolicy, TrtGptModelOptionalParams const& optionalParams,
|
|
std::shared_ptr<Recorder> recorder, std::optional<uint64_t> terminateReqId)
|
|
{
|
|
mBatchManager = std::make_shared<GptManager>(
|
|
trtEnginePath, modelType, maxBeamWidth, schedulerPolicy,
|
|
[this](int max_num_requests) { return getInferenceRequests(max_num_requests); },
|
|
[this](uint64_t requestId, std::list<NamedTensor> response_tensors, bool final_response,
|
|
const std::string& errMsg)
|
|
{ return sendResponse(requestId, response_tensors, final_response, errMsg); },
|
|
nullptr, nullptr, optionalParams, terminateReqId);
|
|
mRecorder = recorder;
|
|
mTerminateReqId = terminateReqId;
|
|
}
|
|
|
|
~GptServer()
|
|
{
|
|
mWorkItemsQueue.clear();
|
|
}
|
|
|
|
void enqueue(std::shared_ptr<InferenceRequest> const& request)
|
|
{
|
|
TLLM_CHECK(request != nullptr);
|
|
auto const requestId = request->getRequestId();
|
|
if (requestId == mTerminateReqId)
|
|
{
|
|
mWorkItemsQueue.push(request, requestId);
|
|
return;
|
|
}
|
|
|
|
// Enqueue
|
|
try
|
|
{
|
|
mRecorder->recordStart(request, requestId);
|
|
mWorkItemsQueue.push(request, requestId);
|
|
}
|
|
catch (const tc::TllmException& e)
|
|
{
|
|
throw;
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
TLLM_THROW("%s", e.what());
|
|
}
|
|
}
|
|
|
|
void waitForEmpty() const
|
|
{
|
|
while (mWorkItemsQueue.size() > 0)
|
|
{
|
|
}
|
|
}
|
|
|
|
void waitBatchManager() const
|
|
{
|
|
mBatchManager->waitUntilTerminate();
|
|
}
|
|
|
|
// Return up to max_num_requests inference requests.
|
|
std::list<std::shared_ptr<InferenceRequest>> getInferenceRequests(const int max_num_requests)
|
|
{
|
|
std::list<std::shared_ptr<InferenceRequest>> rval;
|
|
if (max_num_requests > 0)
|
|
{
|
|
auto world_size = getCommWorldSize();
|
|
auto rank = getCommWorldRank();
|
|
if (rank == 0)
|
|
{
|
|
int64_t num_new_work_items = std::min(static_cast<int64_t>(mWorkItemsQueue.numPendingWorkItems()),
|
|
static_cast<int64_t>(max_num_requests));
|
|
if (world_size > 1)
|
|
{
|
|
bcast(&num_new_work_items, 1, MPI_TYPE_INT64_T, 0, COMM_WORLD);
|
|
}
|
|
|
|
if (num_new_work_items > 0)
|
|
{
|
|
int count = 0;
|
|
while (count < num_new_work_items)
|
|
{
|
|
auto [workItem, markedInProgress] = mWorkItemsQueue.pop();
|
|
|
|
if (markedInProgress)
|
|
{
|
|
rval.emplace_back(workItem->getInferenceRequest());
|
|
count++;
|
|
}
|
|
else
|
|
{
|
|
auto warnStr = tc::fmtstr(
|
|
"request Id %lu has been stopped. Request is ignored.", workItem->requestId());
|
|
TLLM_LOG_WARNING(warnStr);
|
|
sendResponse(workItem->requestId(), {}, true, warnStr);
|
|
}
|
|
}
|
|
if (world_size > 1)
|
|
{
|
|
std::vector<int64_t> packed;
|
|
for (auto const& ir : rval)
|
|
{
|
|
auto vpacked = ir->serialize();
|
|
packed.push_back(static_cast<int64_t>(vpacked.size()));
|
|
packed.insert(
|
|
packed.end(), std::move_iterator(vpacked.begin()), std::move_iterator(vpacked.end()));
|
|
}
|
|
bcast(packed, 0, COMM_WORLD);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// subordinate ranks hang until master rank sends work
|
|
int64_t num_new_work_items;
|
|
bcast(&num_new_work_items, 1, MPI_TYPE_INT64_T, 0, COMM_WORLD);
|
|
if (num_new_work_items > 0)
|
|
{
|
|
std::vector<int64_t> packed;
|
|
bcast(packed, 0, COMM_WORLD);
|
|
int64_t* packed_ptr = packed.data();
|
|
for (int64_t count = 0; count < num_new_work_items; ++count)
|
|
{
|
|
int64_t n = *(packed_ptr++);
|
|
auto ir = InferenceRequest::deserialize(packed_ptr);
|
|
packed_ptr += n;
|
|
rval.emplace_back(ir);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
void sendResponse(uint64_t requestId, [[maybe_unused]] std::list<NamedTensor> const& response_tensors,
|
|
bool final_response, [[maybe_unused]] const std::string& errMsg)
|
|
{
|
|
try
|
|
{
|
|
if (final_response)
|
|
{
|
|
mWorkItemsQueue.markFinished(requestId);
|
|
mRecorder->recordEnd(requestId);
|
|
}
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
TLLM_LOG_ERROR("Failed to send response for requestId: %ul\n%s", requestId, e.what());
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<GptManager> mBatchManager;
|
|
std::shared_ptr<Recorder> mRecorder;
|
|
WorkItemsQueue mWorkItemsQueue;
|
|
std::optional<uint64_t> mTerminateReqId;
|
|
|
|
}; // class GptServer
|
|
|
|
namespace
|
|
{
|
|
|
|
std::pair<std::vector<std::vector<int32_t>>, std::vector<int32_t>> parseDataset(
|
|
std::filesystem::path const& datasetPath)
|
|
{
|
|
auto constexpr allowExceptions = true;
|
|
auto constexpr ingoreComments = true;
|
|
TLLM_CHECK_WITH_INFO(std::filesystem::exists(datasetPath), "File does not exist: %s", datasetPath.string().c_str());
|
|
std::ifstream jsonStream(datasetPath);
|
|
auto json = nlohmann::json::parse(jsonStream, nullptr, allowExceptions, ingoreComments);
|
|
|
|
std::vector<std::vector<int32_t>> inputIds;
|
|
std::vector<int32_t> outputIds;
|
|
for (auto& sample : json)
|
|
{
|
|
inputIds.push_back(sample["input_ids"]);
|
|
outputIds.push_back(sample["output_len"]);
|
|
}
|
|
return std::make_pair(inputIds, outputIds);
|
|
}
|
|
|
|
std::shared_ptr<InferenceRequest> makeRequest(std::uint64_t reqId,
|
|
std::pair<std::vector<std::vector<int32_t>>, std::vector<int32_t>> const& dataset, std::size_t sample_idx,
|
|
ITensor::SharedPtr const& beamWidthTensor, ITensor::SharedPtr const& eosId, ITensor::SharedPtr const& padId,
|
|
BufferManager const& bufferManager)
|
|
{
|
|
auto request = std::make_shared<InferenceRequest>(reqId);
|
|
auto const& inputIds = dataset.first[sample_idx];
|
|
request->setInputIds(bufferManager.copyFrom(
|
|
inputIds, ITensor::makeShape({1, static_cast<SizeType>(inputIds.size())}), MemoryType::kPINNED));
|
|
auto const request_output_len = dataset.second[sample_idx];
|
|
request->setMaxNewTokens(
|
|
bufferManager.copyFrom(&request_output_len, ITensor::makeShape({1, 1}), MemoryType::kPINNED));
|
|
request->setBeamWidth(beamWidthTensor);
|
|
request->setEndId(eosId);
|
|
request->setPadId(padId);
|
|
return request;
|
|
}
|
|
|
|
void benchmarkGptManager([[maybe_unused]] std::string const& modelName, std::filesystem::path const& engineDir,
|
|
std::string const& type, std::string const& datasetPath, int beamWidth, int warmUp,
|
|
const std::optional<int32_t>& eosId, const std::optional<int32_t>& padId,
|
|
std::shared_ptr<nvinfer1::ILogger> const& logger, TrtGptModelOptionalParams const& optionalParams,
|
|
batch_scheduler::SchedulerPolicy schedulerPolicy)
|
|
{
|
|
auto const worldConfig = WorldConfig::mpi(*logger);
|
|
|
|
TrtGptModelType modelType;
|
|
if (type == "V1")
|
|
{
|
|
modelType = TrtGptModelType::V1;
|
|
}
|
|
else if (type == "IFB")
|
|
{
|
|
modelType = TrtGptModelType::InflightFusedBatching;
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_ERROR("Unexpected batching type: %s", type.c_str());
|
|
}
|
|
|
|
BufferManager bufferManager{std::make_shared<CudaStream>()}; // the stream is not used
|
|
|
|
ITensor::SharedPtr beamWidthTensor{
|
|
bufferManager.copyFrom(&beamWidth, ITensor::makeShape({1}), MemoryType::kPINNED)};
|
|
|
|
// Load dataset
|
|
auto dataset = parseDataset(datasetPath);
|
|
const auto numSamples = dataset.first.size();
|
|
|
|
const int maxBeamWidth = beamWidth;
|
|
auto recorder = std::make_shared<Recorder>();
|
|
uint64_t terminateReqId = numSamples + 1;
|
|
auto gptServer = std::make_shared<GptServer>(
|
|
engineDir, modelType, maxBeamWidth, schedulerPolicy, optionalParams, recorder, terminateReqId);
|
|
|
|
ITensor::SharedPtr eosIdTensor{
|
|
eosId ? bufferManager.copyFrom(&eosId.value(), ITensor::makeShape({1}), MemoryType::kPINNED) : nullptr};
|
|
ITensor::SharedPtr padIdTensor{
|
|
padId ? bufferManager.copyFrom(&padId.value(), ITensor::makeShape({1}), MemoryType::kPINNED) : nullptr};
|
|
|
|
if (worldConfig.getRank() == 0)
|
|
{
|
|
// Warm up
|
|
SizeType reqId = 0;
|
|
for (auto i = 0; i < warmUp; ++i)
|
|
{
|
|
++reqId;
|
|
if (i == terminateReqId)
|
|
++reqId;
|
|
auto request = makeRequest(reqId, dataset, 0, beamWidthTensor, eosIdTensor, padIdTensor, bufferManager);
|
|
gptServer->enqueue(request);
|
|
}
|
|
gptServer->waitForEmpty();
|
|
|
|
// Benchmark
|
|
recorder->initialize();
|
|
for (std::size_t i = 0; i < numSamples; ++i)
|
|
{
|
|
auto request = makeRequest(i + 1, dataset, i, beamWidthTensor, eosIdTensor, padIdTensor, bufferManager);
|
|
gptServer->enqueue(request);
|
|
}
|
|
gptServer->waitForEmpty();
|
|
recorder->finalize();
|
|
recorder->calculateMetrics();
|
|
recorder->report();
|
|
// Send terminateReqId to terminate servers on all ranks
|
|
// Sever on rank 0 will broadcast the terminate signal to other servers on multi-GPU cases
|
|
gptServer->enqueue(std::make_shared<InferenceRequest>(terminateReqId));
|
|
}
|
|
// Wait until benchmarking is done and batch manager is terminated
|
|
gptServer->waitBatchManager();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
cxxopts::Options options(
|
|
"TensorRT-LLM BatchManager Benchmark", "TensorRT-LLM BatchManager Benchmark for GPT and GPT-like models.");
|
|
options.add_options()("h,help", "Print usage");
|
|
options.add_options()(
|
|
"m,model", "Model name specified for engines.", cxxopts::value<std::string>()->default_value("gpt_350m"));
|
|
options.add_options()("engine_dir", "Directory that store the engines.", cxxopts::value<std::string>());
|
|
options.add_options()(
|
|
"type", "Batching type: IFB or V1(non-IFB) batching.", cxxopts::value<std::string>()->default_value("IFB"));
|
|
options.add_options()("dataset", "Dataset that is used for benchmarking BatchManager.",
|
|
cxxopts::value<std::string>()->default_value(""));
|
|
options.add_options()(
|
|
"beam_width", "Specify beam width you want to benchmark.", cxxopts::value<int>()->default_value("1"));
|
|
options.add_options()(
|
|
"warm_up", "Specify warm up iterations before benchmark starts.", cxxopts::value<int>()->default_value("2"));
|
|
options.add_options()("eos_id", "Specify the end-of-sequence token id.", cxxopts::value<int>());
|
|
options.add_options()("pad_id", "Specify the padding token id.", cxxopts::value<int>());
|
|
options.add_options()("max_num_sequences", "Max number of Sequences.", cxxopts::value<int>());
|
|
options.add_options()("max_tokens_in_paged_kvcache", "Max tokens in paged K-V Cache.", cxxopts::value<int>());
|
|
options.add_options()(
|
|
"kv_cache_free_gpu_mem_fraction", "K-V Cache Free Gpu Mem Fraction.", cxxopts::value<float>());
|
|
options.add_options()(
|
|
"enable_trt_overlap", "Overlap TRT context preparation and execution", cxxopts::value<bool>());
|
|
|
|
options.add_options()("scheduler_policy", "Choose scheduler policy between max_utilization/guaranteed_no_evict.",
|
|
cxxopts::value<std::string>()->default_value("guaranteed_no_evict"));
|
|
|
|
options.add_options()("log_level", "Choose log level between verbose/info/warning/error/internal_error.",
|
|
cxxopts::value<std::string>()->default_value("error"));
|
|
|
|
auto result = options.parse(argc, argv);
|
|
|
|
if (result.count("help"))
|
|
{
|
|
std::cout << options.help() << std::endl;
|
|
return 0;
|
|
}
|
|
|
|
// Argument: Engine directory
|
|
if (!result.count("engine_dir"))
|
|
{
|
|
std::cout << options.help() << std::endl;
|
|
TLLM_LOG_ERROR("Please specify engine directory.");
|
|
return 1;
|
|
}
|
|
|
|
// Argument: Batching Type
|
|
auto const type = result["type"].as<std::string>();
|
|
|
|
// Argument: Dataset
|
|
auto const datasetPath = result["dataset"].as<std::string>();
|
|
|
|
// Argument: beam width
|
|
auto const beamWidth = result["beam_width"].as<int>();
|
|
|
|
TrtGptModelOptionalParams optionalParams;
|
|
// Argument: Max Num Sequences
|
|
if (result.count("max_num_sequences"))
|
|
{
|
|
optionalParams.maxNumSequences = result["max_num_sequences"].as<int>();
|
|
}
|
|
// Argument: Max tokens in paged K-V Cache
|
|
if (result.count("max_tokens_in_paged_kvcache"))
|
|
{
|
|
optionalParams.kvCacheConfig.maxTokens = result["max_tokens_in_paged_kvcache"].as<int>();
|
|
}
|
|
// Argument: K-V Cache Free Gpu Mem Fraction
|
|
if (result.count("kv_cache_free_gpu_mem_fraction"))
|
|
{
|
|
optionalParams.kvCacheConfig.freeGpuMemoryFraction = result["kv_cache_free_gpu_mem_fraction"].as<float>();
|
|
}
|
|
// Argument: Enable TRT overlap
|
|
if (result.count("enable_trt_overlap"))
|
|
{
|
|
optionalParams.enableTrtOverlap = result["enable_trt_overlap"].as<bool>();
|
|
}
|
|
|
|
std::optional<int32_t> padId;
|
|
// Argument: Padding token id
|
|
if (result.count("pad_id"))
|
|
{
|
|
padId = result["pad_id"].as<int>();
|
|
}
|
|
|
|
std::optional<int32_t> eosId;
|
|
// Argument: End-of-sentence token id
|
|
if (result.count("eos_id"))
|
|
{
|
|
eosId = result["eos_id"].as<int>();
|
|
}
|
|
|
|
// Argument: Scheduler policy
|
|
batch_scheduler::SchedulerPolicy schedulerPolicy;
|
|
auto const schedulerPolicyArg = result["scheduler_policy"].as<std::string>();
|
|
if (schedulerPolicyArg == "max_utilization")
|
|
{
|
|
schedulerPolicy = batch_scheduler::SchedulerPolicy::MAX_UTILIZATION;
|
|
}
|
|
else if (schedulerPolicyArg == "guaranteed_no_evict")
|
|
{
|
|
schedulerPolicy = batch_scheduler::SchedulerPolicy::GUARANTEED_NO_EVICT;
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_ERROR("Unexpected scheduler policy: " + schedulerPolicyArg);
|
|
return 1;
|
|
}
|
|
|
|
// Argument: Log level
|
|
auto logger = std::make_shared<TllmLogger>();
|
|
auto const logLevel = result["log_level"].as<std::string>();
|
|
if (logLevel == "verbose")
|
|
{
|
|
logger->setLevel(trt::ILogger::Severity::kVERBOSE);
|
|
}
|
|
else if (logLevel == "info")
|
|
{
|
|
logger->setLevel(trt::ILogger::Severity::kINFO);
|
|
}
|
|
else if (logLevel == "warning")
|
|
{
|
|
logger->setLevel(trt::ILogger::Severity::kWARNING);
|
|
}
|
|
else if (logLevel == "error")
|
|
{
|
|
logger->setLevel(trt::ILogger::Severity::kERROR);
|
|
}
|
|
else if (logLevel == "internal_error")
|
|
{
|
|
logger->setLevel(trt::ILogger::Severity::kINTERNAL_ERROR);
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_ERROR("Unexpected log level: " + logLevel);
|
|
return 1;
|
|
}
|
|
|
|
initTrtLlmPlugins(logger.get());
|
|
|
|
try
|
|
{
|
|
benchmarkGptManager(result["model"].as<std::string>(), result["engine_dir"].as<std::string>(), type,
|
|
datasetPath, beamWidth, result["warm_up"].as<int>(), eosId, padId, logger, optionalParams, schedulerPolicy);
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
TLLM_LOG_ERROR(e.what());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|