TensorRT-LLMs/cpp/tensorrt_llm/layers/topKSamplingLayer.h
2023-12-01 22:27:51 +08:00

74 lines
2.2 KiB
C++

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/layers/baseSamplingLayer.h"
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
class TopKSamplingLayer : public BaseSamplingLayer<T>
{
public:
using Base = BaseSamplingLayer<T>;
using SetupParams = typename Base::SetupParams;
TopKSamplingLayer(size_t vocab_size, size_t vocab_size_padded, cudaStream_t stream,
tensorrt_llm::common::IAllocator* allocator, bool is_free_buffer_after_forward);
TopKSamplingLayer(TopKSamplingLayer<T> const& top_k_sampling_layer);
~TopKSamplingLayer();
void setup(size_t batch_size, SetupParams const& setupParams);
protected:
void runSampling(DecodingOutputParams& outputs, DecodingParams const& params) override;
void freeBuffer() override;
uint32_t runtime_max_top_k_ = 1;
uint32_t* runtime_top_k_buf_ = nullptr;
float* runtime_top_p_buf_ = nullptr;
using Base::vocab_size_;
using Base::vocab_size_padded_;
using Base::sampling_workspace_size_;
using Base::sampling_workspace_;
using Base::curandstate_buf_;
using Base::random_seeds_buf_;
using Base::skip_decode_buf_;
using Base::skip_decode_;
using Base::skip_any_;
using Base::runtime_logits_buf_;
using Base::stream_;
using Base::allocator_;
using Base::is_allocate_buffer_;
private:
void allocateBuffer(size_t batch_size, std::vector<uint32_t> const& top_k);
};
} // namespace layers
} // namespace tensorrt_llm