mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
908 lines
40 KiB
Python
908 lines
40 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import configparser
|
|
import time
|
|
from operator import attrgetter
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
import tensorrt_llm
|
|
import tensorrt_llm.logger as logger
|
|
from tensorrt_llm._utils import pad_vocab_size, str_dtype_to_np
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import GPTJForCausalLM
|
|
from tensorrt_llm.models.quantized.quant import get_dummy_quant_scales
|
|
from tensorrt_llm.quantization import QuantMode
|
|
|
|
|
|
def get_scaling_factors(
|
|
model_path: Union[str, Path],
|
|
num_layers: int,
|
|
quant_mode: Optional[QuantMode] = None,
|
|
) -> Optional[Dict[str, List[int]]]:
|
|
""" Get the scaling factors for GPT-J model
|
|
|
|
Returns a dictionary of scaling factors for the selected layers of the
|
|
GPT-J model.
|
|
|
|
Args:
|
|
model_path (str): Path to the quantized GPT-J model
|
|
layers (list): List of layers to get the scaling factors for. If None,
|
|
all layers are selected.
|
|
|
|
Returns:
|
|
dict: Dictionary of scaling factors for the selected layers of the
|
|
GPT-J model.
|
|
|
|
example:
|
|
|
|
{
|
|
'qkv_act': qkv_act_scale,
|
|
'qkv_weights': qkv_weights_scale,
|
|
'qkv_output' : qkv_outputs_scale,
|
|
'dense_act': dense_act_scale,
|
|
'dense_weights': dense_weights_scale,
|
|
'fc_act': fc_act_scale,
|
|
'fc_weights': fc_weights_scale,
|
|
'proj_act': proj_act_scale,
|
|
'proj_weights': proj_weights_scale,
|
|
}
|
|
"""
|
|
|
|
if model_path is None:
|
|
logger.warning(f"--quantized_fp8_model_path not specified. "
|
|
f"Initialize quantization scales automatically.")
|
|
return get_dummy_quant_scales(num_layers)
|
|
weight_dict = np.load(model_path)
|
|
|
|
# yapf: disable
|
|
scaling_factor = {
|
|
'qkv_act': [],
|
|
'qkv_weights': [],
|
|
'qkv_output': [],
|
|
'dense_act': [],
|
|
'dense_weights': [],
|
|
'fc_act': [],
|
|
'fc_weights': [],
|
|
'proj_act': [],
|
|
'proj_weights': [],
|
|
}
|
|
|
|
for layer in range(num_layers):
|
|
scaling_factor['qkv_act'].append(max(
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:q:activation_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:k:activation_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:v:activation_scaling_factor'].item()
|
|
))
|
|
scaling_factor['qkv_weights'].append(max(
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:q:weights_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:k:weights_scaling_factor'].item(),
|
|
weight_dict[f'_np:layers:{layer}:attention:qkv:v:weights_scaling_factor'].item()
|
|
))
|
|
if quant_mode is not None and quant_mode.has_fp8_kv_cache():
|
|
# Not calibrarting KV cache.
|
|
scaling_factor['qkv_output'].append(1.0)
|
|
scaling_factor['dense_act'].append(weight_dict[f'_np:layers:{layer}:attention:dense:activation_scaling_factor'].item())
|
|
scaling_factor['dense_weights'].append(weight_dict[f'_np:layers:{layer}:attention:dense:weights_scaling_factor'].item())
|
|
scaling_factor['fc_act'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:activation_scaling_factor'].item())
|
|
scaling_factor['fc_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:weights_scaling_factor'].item())
|
|
scaling_factor['proj_act'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:activation_scaling_factor'].item())
|
|
scaling_factor['proj_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:weights_scaling_factor'].item())
|
|
# yapf: enable
|
|
for k, v in scaling_factor.items():
|
|
assert len(v) == num_layers, \
|
|
f'Expect scaling factor {k} of length {num_layers}, got {len(v)}'
|
|
|
|
return scaling_factor
|
|
|
|
|
|
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
|
|
suffix = f"{rank}.bin"
|
|
if use_smooth_quant:
|
|
sq_prefix = "int8."
|
|
if quant_per_channel:
|
|
sq_prefix += "col."
|
|
suffix = sq_prefix + suffix
|
|
return suffix
|
|
|
|
|
|
def extract_layer_idx(name):
|
|
ss = name.split('.')
|
|
for s in ss:
|
|
if s.isdigit():
|
|
return s
|
|
return None
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return np.ascontiguousarray(np.split(v, tp_size)[idx])
|
|
elif len(v.shape) == 2:
|
|
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
|
|
return None
|
|
|
|
|
|
def parse_config(ini_file):
|
|
gpt_config = configparser.ConfigParser()
|
|
gpt_config.read(ini_file)
|
|
|
|
n_embd = gpt_config.getint('gpt', 'n_embd')
|
|
n_head = gpt_config.getint('gpt', 'n_head')
|
|
n_layer = gpt_config.getint('gpt', 'n_layer')
|
|
n_positions = gpt_config.getint('gpt', 'n_positions')
|
|
vocab_size = gpt_config.getint('gpt', 'vocab_size')
|
|
do_layer_norm_before = gpt_config.getboolean('gpt',
|
|
'do_layer_norm_before',
|
|
fallback=True)
|
|
rotary_pct = gpt_config.getfloat('gpt', 'rotary_pct', fallback=0.0)
|
|
hidden_act = gpt_config.get('gpt', 'activation_function')
|
|
bias = gpt_config.getboolean('gpt', 'bias', fallback=True)
|
|
inter_size = gpt_config.getint('gpt', 'intermediate_size', fallback=None)
|
|
dtype = gpt_config.get('gpt', 'storage_dtype', fallback='float32')
|
|
|
|
if inter_size is None:
|
|
inter_size = 4 * n_embd
|
|
|
|
multi_query_mode = gpt_config.getboolean('gpt',
|
|
'multi_query_mode',
|
|
fallback=False)
|
|
prompt_num_tasks = gpt_config.getint('gpt', 'prompt_num_tasks', fallback=0)
|
|
prompt_max_vocab_size = gpt_config.getint('gpt',
|
|
'prompt_max_vocab_size',
|
|
fallback=0)
|
|
return n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before, hidden_act, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size
|
|
|
|
|
|
def load_from_bin_gpt_j(tensorrt_llm_gpt_j: GPTJForCausalLM,
|
|
dir_path,
|
|
rank=0,
|
|
tensor_parallel=1,
|
|
dtype='float32',
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0,
|
|
share_embedding_table=False,
|
|
scaling_factors=None):
|
|
tensorrt_llm.logger.info('Loading weights from bin...')
|
|
tik = time.time()
|
|
|
|
quant_mode = getattr(tensorrt_llm_gpt_j, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before, hidden_act, rotary_pct, bias, inter_size, multi_query_mode, *_ = parse_config(
|
|
Path(dir_path) / 'config.ini')
|
|
np_dtype = str_dtype_to_np(dtype)
|
|
|
|
def fromfile(dir_path, name, shape=None, dtype=None):
|
|
dtype = np_dtype if dtype is None else dtype
|
|
p = dir_path + '/' + name
|
|
if Path(p).exists():
|
|
t = np.fromfile(p, dtype=dtype)
|
|
if shape is not None:
|
|
t = t.reshape(shape)
|
|
return t
|
|
return None
|
|
|
|
def set_smoothquant_scale_factors(module,
|
|
pre_scale_weight,
|
|
dir_path,
|
|
basename,
|
|
shape,
|
|
per_tok_dyn,
|
|
per_channel,
|
|
is_qkv=False,
|
|
rank=None):
|
|
suffix = "bin"
|
|
if per_channel:
|
|
if rank is not None:
|
|
suffix = f"{rank}." + suffix
|
|
suffix = "col." + suffix
|
|
|
|
col_shape = shape if (per_channel or is_qkv) else [1, 1]
|
|
if per_tok_dyn:
|
|
if pre_scale_weight is not None:
|
|
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
|
|
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
else:
|
|
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
|
|
np.float32)
|
|
pre_scale_weight.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
|
|
col_shape, np.float32)
|
|
module.per_channel_scale.value = t
|
|
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
|
|
np.float32)
|
|
module.act_scale.value = t
|
|
|
|
# Do we use SmoothQuant?
|
|
use_smooth_quant = quant_mode.has_act_and_weight_quant()
|
|
# Do we use quantization per token?
|
|
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
|
|
# Do we use quantization per channel?
|
|
quant_per_channel = quant_mode.has_per_channel_scaling()
|
|
|
|
# Do we use INT4/INT8 weight-only?
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
# Int8 KV cache
|
|
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
|
|
|
|
#Enable FP8 Gemm
|
|
enable_fp8_qdq = quant_mode.has_fp8_qdq()
|
|
|
|
def sq_trick(x):
|
|
return x.view(np.float32) if use_smooth_quant else x
|
|
|
|
# Debug
|
|
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
|
|
# The type of weights.
|
|
w_type = np_dtype if not use_smooth_quant else np.int8
|
|
|
|
# pe = fromfile(dir_path, 'model.wpe.bin', [n_positions, n_embd])
|
|
# if pe is not None:
|
|
# tensorrt_llm_gpt_j.embedding.position_embedding.weight.value = (pe)
|
|
|
|
vocab_embedding_weight = fromfile(dir_path, 'model.wte.bin',
|
|
[vocab_size, n_embd])
|
|
if not use_parallel_embedding:
|
|
tensorrt_llm_gpt_j.embedding.weight.value = vocab_embedding_weight
|
|
else:
|
|
if sharding_dim == 0:
|
|
if vocab_size % tensor_parallel != 0:
|
|
# padding
|
|
vocab_size_padded = pad_vocab_size(
|
|
tensorrt_llm_gpt_j.embedding.num_embeddings,
|
|
tensor_parallel)
|
|
pad_width = vocab_size_padded - vocab_size
|
|
vocab_embedding_weight = np.pad(vocab_embedding_weight,
|
|
((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0)
|
|
tensorrt_llm_gpt_j.embedding.weight.value = np.ascontiguousarray(
|
|
split(vocab_embedding_weight,
|
|
tensor_parallel,
|
|
rank,
|
|
dim=sharding_dim))
|
|
|
|
if do_layer_norm_before:
|
|
tensorrt_llm_gpt_j.ln_f.bias.value = (fromfile(
|
|
dir_path, 'model.final_layernorm.bias.bin'))
|
|
tensorrt_llm_gpt_j.ln_f.weight.value = (fromfile(
|
|
dir_path, 'model.final_layernorm.weight.bin'))
|
|
|
|
# share input embedding
|
|
if not share_embedding_table:
|
|
lm_head_weight = fromfile(dir_path, 'model.lm_head.weight.bin',
|
|
[vocab_size, n_embd])
|
|
lm_head_bias = fromfile(dir_path, 'model.lm_head.bias.bin',
|
|
[vocab_size])
|
|
if lm_head_weight is None:
|
|
lm_head_weight = fromfile(dir_path, 'model.wte.bin',
|
|
[vocab_size, n_embd])
|
|
if vocab_size % tensor_parallel != 0:
|
|
# padding
|
|
vocab_size_padded = tensorrt_llm_gpt_j.lm_head.out_features * tensor_parallel
|
|
pad_width = vocab_size_padded - vocab_size
|
|
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
|
|
'constant',
|
|
constant_values=0)
|
|
tensorrt_llm_gpt_j.lm_head.weight.value = np.ascontiguousarray(
|
|
split(lm_head_weight, tensor_parallel, rank))
|
|
tensorrt_llm_gpt_j.lm_head.bias.value = np.ascontiguousarray(
|
|
split(lm_head_bias, tensor_parallel, rank))
|
|
fake_fp8_sf_dt = np.float32
|
|
for i in range(n_layer):
|
|
c_attn_out_dim = (3 * n_embd //
|
|
tensor_parallel) if not multi_query_mode else (
|
|
n_embd // tensor_parallel +
|
|
(n_embd // n_head) * 2)
|
|
tensorrt_llm_gpt_j.layers[i].input_layernorm.weight.value = (fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
|
|
tensorrt_llm_gpt_j.layers[i].input_layernorm.bias.value = (fromfile(
|
|
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.weight.' + suffix,
|
|
[n_embd, c_attn_out_dim], w_type)
|
|
if t is not None:
|
|
dst = tensorrt_llm_gpt_j.layers[i].attention.qkv.weight
|
|
if use_smooth_quant:
|
|
dst.value = sq_trick(
|
|
np.ascontiguousarray(np.transpose(t, [1, 0])))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_gpt_j.layers[i].attention.qkv,
|
|
tensorrt_llm_gpt_j.layers[i].input_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.query_key_value.',
|
|
[1, c_attn_out_dim],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=rank,
|
|
is_qkv=True)
|
|
elif use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_gpt_j.layers[
|
|
i].attention.qkv.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
|
|
if enable_fp8_qdq:
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.qkv.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['qkv_act'][i]], dtype=fake_fp8_sf_dt)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.qkv.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['qkv_weights'][i]], dtype=fake_fp8_sf_dt)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.kv_orig_quant_scale.value = np.array(
|
|
[scaling_factors['qkv_output'][i]], dtype=np.float32)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.kv_quant_orig_scale.value = np.array(
|
|
[1.0 / scaling_factors['qkv_output'][i]], dtype=np.float32)
|
|
|
|
dst = tensorrt_llm_gpt_j.layers[i].attention.dense.weight
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
|
|
[n_embd // tensor_parallel, n_embd], w_type)
|
|
if use_smooth_quant:
|
|
dst.value = sq_trick(np.ascontiguousarray(np.transpose(t, [1, 0])))
|
|
dense_scale = getattr(tensorrt_llm_gpt_j.layers[i].attention,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_gpt_j.layers[i].attention.dense, dense_scale,
|
|
dir_path, 'model.layers.' + str(i) + '.attention.dense.',
|
|
[1, n_embd], quant_per_token_dyn, quant_per_channel)
|
|
# change it to the real smoother if dense layer is applied smooth quant
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.dense.smoother.value = np.ones(
|
|
[1, n_embd // tensor_parallel], dtype=np.float32)
|
|
elif use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_gpt_j.layers[
|
|
i].attention.dense.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
|
|
|
|
if enable_fp8_qdq:
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.dense.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['dense_act'][i]], dtype=fake_fp8_sf_dt)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.dense.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['dense_weights'][i]], dtype=fake_fp8_sf_dt)
|
|
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' + suffix,
|
|
[n_embd, inter_size // tensor_parallel], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_gpt_j.layers[i].mlp.fc.weight.value = sq_trick(
|
|
np.ascontiguousarray(np.transpose(t, [1, 0])))
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_gpt_j.layers[i].mlp.fc,
|
|
tensorrt_llm_gpt_j.layers[i].post_layernorm.scale_to_int,
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.',
|
|
[1, inter_size // tensor_parallel],
|
|
quant_per_token_dyn,
|
|
quant_per_channel,
|
|
rank=rank)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_gpt_j.layers[i].mlp.fc.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_gpt_j.layers[i].mlp.fc.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].mlp.fc.weight.value = np.ascontiguousarray(
|
|
np.transpose(t, [1, 0]))
|
|
if bias:
|
|
tensorrt_llm_gpt_j.layers[i].mlp.fc.bias.value = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.mlp.dense_h_to_4h.bias.' + str(rank) + '.bin')
|
|
if enable_fp8_qdq:
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].mlp.fc.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['fc_act'][i]], dtype=fake_fp8_sf_dt)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].mlp.fc.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['fc_weights'][i]], dtype=fake_fp8_sf_dt)
|
|
|
|
t = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' + suffix,
|
|
[inter_size // tensor_parallel, n_embd], w_type)
|
|
if use_smooth_quant:
|
|
tensorrt_llm_gpt_j.layers[i].mlp.proj.weight.value = sq_trick(
|
|
np.ascontiguousarray(np.transpose(t, [1, 0])))
|
|
proj_scale = getattr(tensorrt_llm_gpt_j.layers[i].mlp,
|
|
"quantization_scaling_factor", None)
|
|
set_smoothquant_scale_factors(
|
|
tensorrt_llm_gpt_j.layers[i].mlp.proj, proj_scale, dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.', [1, n_embd],
|
|
quant_per_token_dyn, quant_per_channel)
|
|
# change it to the real smoother if proj layer is applied smooth quant
|
|
tensorrt_llm_gpt_j.layers[i].mlp.proj.smoother.value = np.ones(
|
|
[1, inter_size // tensor_parallel], dtype=np.float32)
|
|
elif use_weight_only:
|
|
dst = tensorrt_llm_gpt_j.layers[i].mlp.proj.weight
|
|
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
torch.tensor(t), plugin_weight_only_quant_type)
|
|
dst.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_gpt_j.layers[i].mlp.proj.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
tensorrt_llm_gpt_j.layers[i].mlp.proj.weight.value = (
|
|
np.ascontiguousarray(np.transpose(t, [1, 0])))
|
|
if bias:
|
|
tensorrt_llm_gpt_j.layers[i].mlp.proj.bias.value = fromfile(
|
|
dir_path,
|
|
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
|
|
|
|
if use_int8_kv_cache:
|
|
t = fromfile(
|
|
dir_path, 'model.layers.' + str(i) +
|
|
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
|
|
np.float32)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].attention.kv_orig_quant_scale.value = 1.0 / t
|
|
tensorrt_llm_gpt_j.layers[i].attention.kv_quant_orig_scale.value = t
|
|
|
|
if enable_fp8_qdq:
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].mlp.proj.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['proj_act'][i]], dtype=fake_fp8_sf_dt)
|
|
tensorrt_llm_gpt_j.layers[
|
|
i].mlp.proj.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['proj_weights'][i]], dtype=fake_fp8_sf_dt)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
|
|
def load_from_hf_gpt_j(tensorrt_llm_gpt_j: GPTJForCausalLM,
|
|
hf_gpt_j,
|
|
fp16=False,
|
|
scaling_factors=None):
|
|
|
|
hf_model_gptj_block_names = [
|
|
"ln_1.weight",
|
|
"ln_1.bias",
|
|
"mlp.fc_in.weight",
|
|
"mlp.fc_in.bias",
|
|
"mlp.fc_out.weight",
|
|
"mlp.fc_out.bias",
|
|
]
|
|
|
|
tensorrt_llm_model_gptj_block_names = [
|
|
"input_layernorm.weight",
|
|
"input_layernorm.bias",
|
|
"mlp.fc.weight",
|
|
"mlp.fc.bias",
|
|
"mlp.proj.weight",
|
|
"mlp.proj.bias",
|
|
]
|
|
|
|
quant_mode = getattr(tensorrt_llm_gpt_j, 'quant_mode', QuantMode(0))
|
|
if quant_mode.is_int8_weight_only():
|
|
plugin_weight_only_quant_type = torch.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
|
|
# Do we use INT4/INT8 weight-only?
|
|
use_weight_only = quant_mode.is_weight_only()
|
|
|
|
tensorrt_llm.logger.info('Loading weights from HF GPT-J...')
|
|
tik = time.time()
|
|
|
|
torch_dtype = torch.float16 if fp16 else torch.float32
|
|
hf_gpt_j_state_dict = hf_gpt_j.state_dict()
|
|
|
|
v = hf_gpt_j_state_dict.get('transformer.wte.weight')
|
|
tensorrt_llm_gpt_j.embedding.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
n_layer = hf_gpt_j.config.n_layer
|
|
|
|
for layer_idx in range(n_layer):
|
|
prefix = "transformer.h." + str(layer_idx) + "."
|
|
for idx, hf_attr in enumerate(hf_model_gptj_block_names):
|
|
v = hf_gpt_j_state_dict.get(prefix + hf_attr)
|
|
layer = attrgetter(tensorrt_llm_model_gptj_block_names[idx])(
|
|
tensorrt_llm_gpt_j.layers[layer_idx])
|
|
if idx == 2 and scaling_factors:
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].mlp.fc.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['fc_act'][layer_idx]],
|
|
dtype=np.float32)
|
|
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].mlp.fc.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['fc_weights'][layer_idx]],
|
|
dtype=np.float32)
|
|
|
|
elif idx == 4 and scaling_factors:
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].mlp.proj.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['proj_act'][layer_idx]],
|
|
dtype=np.float32)
|
|
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].mlp.proj.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['proj_weights'][layer_idx]],
|
|
dtype=np.float32)
|
|
if use_weight_only and (idx == 2 or idx == 4):
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v.transpose(0, 1).contiguous(), plugin_weight_only_quant_type
|
|
)
|
|
layer.value = processed_torch_weights.numpy()
|
|
if idx == 2:
|
|
scales = tensorrt_llm_gpt_j.layers[
|
|
layer_idx].mlp.fc.per_channel_scale
|
|
elif idx == 4:
|
|
scales = tensorrt_llm_gpt_j.layers[
|
|
layer_idx].mlp.proj.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
setattr(layer, 'value', v.to(torch_dtype).cpu().numpy())
|
|
|
|
# Attention QKV Linear
|
|
# concatenate the Q, K, V layers weights.
|
|
q_weights = hf_gpt_j_state_dict.get(prefix + "attn.q_proj.weight")
|
|
k_weights = hf_gpt_j_state_dict.get(prefix + "attn.k_proj.weight")
|
|
v_weights = hf_gpt_j_state_dict.get(prefix + "attn.v_proj.weight")
|
|
qkv_weights = torch.cat((q_weights, k_weights, v_weights))
|
|
layer = attrgetter("attention.qkv.weight")(
|
|
tensorrt_llm_gpt_j.layers[layer_idx])
|
|
if use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
qkv_weights.transpose(0, 1).contiguous(), plugin_weight_only_quant_type)
|
|
layer.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.qkv.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
setattr(layer, "value", qkv_weights.to(torch_dtype).cpu().numpy())
|
|
if scaling_factors:
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.qkv.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['qkv_act'][layer_idx]], dtype=np.float32)
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.qkv.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['qkv_weights'][layer_idx]],
|
|
dtype=np.float32)
|
|
|
|
if quant_mode.has_fp8_kv_cache():
|
|
if scaling_factors:
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.kv_orig_quant_scale.value = np.array(
|
|
[scaling_factors['qkv_output'][layer_idx]],
|
|
dtype=np.float32)
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.kv_quant_orig_scale.value = np.array(
|
|
[1.0 / scaling_factors['qkv_output'][layer_idx]],
|
|
dtype=np.float32)
|
|
|
|
# Attention Dense (out_proj) Linear
|
|
v = hf_gpt_j_state_dict.get(prefix + "attn.out_proj.weight")
|
|
layer = attrgetter("attention.dense.weight")(
|
|
tensorrt_llm_gpt_j.layers[layer_idx])
|
|
if use_weight_only:
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v.transpose(0, 1).contiguous(), plugin_weight_only_quant_type)
|
|
layer.value = processed_torch_weights.numpy()
|
|
scales = tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.dense.per_channel_scale
|
|
scales.value = torch_weight_scales.numpy()
|
|
else:
|
|
setattr(layer, "value", v.to(torch_dtype).cpu().numpy())
|
|
if scaling_factors:
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.dense.activation_scaling_factor.value = np.array(
|
|
[scaling_factors['dense_act'][layer_idx]], dtype=np.float32)
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.dense.weights_scaling_factor.value = np.array(
|
|
[scaling_factors['dense_weights'][layer_idx]],
|
|
dtype=np.float32)
|
|
|
|
v = hf_gpt_j_state_dict.get('transformer.ln_f.weight')
|
|
tensorrt_llm_gpt_j.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
v = hf_gpt_j_state_dict.get('transformer.ln_f.bias')
|
|
tensorrt_llm_gpt_j.ln_f.bias.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
v = hf_gpt_j_state_dict.get('lm_head.weight')
|
|
tensorrt_llm_gpt_j.lm_head.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
v = hf_gpt_j_state_dict.get('lm_head.bias')
|
|
tensorrt_llm_gpt_j.lm_head.bias.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
|
|
|
|
|
def load_from_awq_gpt_j(tensorrt_llm_gpt_j: GPTJForCausalLM,
|
|
awq_gpt_j,
|
|
config,
|
|
mapping=Mapping(),
|
|
fp16=False,
|
|
group_size=128,
|
|
ft_model_dir=None):
|
|
|
|
awq_gptj_block_names = [
|
|
"ln_1.weight",
|
|
"ln_1.bias",
|
|
"mlp.fc_in.bias",
|
|
"mlp.fc_out.bias",
|
|
]
|
|
|
|
tensorrt_llm_model_gptj_block_names = [
|
|
"input_layernorm.weight",
|
|
"input_layernorm.bias",
|
|
"mlp.fc.bias",
|
|
"mlp.proj.bias",
|
|
]
|
|
|
|
def fromfile(dir_path, name, shape=None, dtype=None):
|
|
p = dir_path + '/' + name
|
|
if Path(p).exists():
|
|
t = np.fromfile(p, dtype=dtype)
|
|
if shape is not None:
|
|
t = t.reshape(shape)
|
|
return t
|
|
return None
|
|
|
|
quant_mode = getattr(tensorrt_llm_gpt_j, 'quant_mode', QuantMode(0))
|
|
# Int8 KV cache
|
|
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
|
|
|
|
packer = torch.ops.fastertransformer.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.fastertransformer.preprocess_weights_for_mixed_gemm
|
|
|
|
tensorrt_llm.logger.info('Loading weights from AWQ GPT-J...')
|
|
tik = time.time()
|
|
|
|
torch_dtype = torch.float16 if fp16 else torch.float32
|
|
|
|
def AWQ_quantize_pack_preprocess(weight, scale):
|
|
scale = scale.repeat_interleave(group_size, dim=0)
|
|
weight = weight / scale
|
|
qweight_int8 = torch.clamp(torch.round(weight.cuda()).char(), -8, 7)
|
|
int4_weight = packer(qweight_int8.cpu())
|
|
int4_weight = preprocessor(int4_weight, torch.quint4x2)
|
|
return int4_weight.view(torch.int8).cpu().numpy()
|
|
|
|
def process_and_assign_weight(awq_gpt_j, mPrefix, mOp, tp_dim=0):
|
|
weight = awq_gpt_j[mPrefix + ".weight"].T.contiguous()
|
|
[k, n] = weight.shape
|
|
weight = weight.split(weight.shape[tp_dim] // mapping.tp_size,
|
|
dim=tp_dim)[mapping.tp_rank]
|
|
amax = awq_gpt_j[mPrefix + ".weight_quantizer._amax"].reshape(
|
|
(n, int(k / group_size))).T.contiguous()
|
|
amax = amax.split(amax.shape[tp_dim] // mapping.tp_size,
|
|
dim=tp_dim)[mapping.tp_rank]
|
|
pre_quant_scale = awq_gpt_j[
|
|
mPrefix + ".input_quantizer._pre_quant_scale"].reshape((1, k))
|
|
if tp_dim == 0:
|
|
pre_quant_scale = pre_quant_scale.split(k // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
scale = amax / 8.0
|
|
mOp.qweight.value = AWQ_quantize_pack_preprocess(weight, scale)
|
|
mOp.scale.value = scale.to(torch_dtype).cpu().numpy()
|
|
mOp.pre_quant_scale.value = pre_quant_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
|
|
def deSmooth(weight, pre_quant_scale):
|
|
[k, n] = weight.shape
|
|
pre_quant_scale = pre_quant_scale.repeat(
|
|
(n, 1)).transpose(1, 0).contiguous()
|
|
weight = weight * pre_quant_scale
|
|
return weight
|
|
|
|
def reSmooth(weight, pre_quant_scale):
|
|
[k, n] = weight.shape
|
|
pre_quant_scale = pre_quant_scale.repeat(
|
|
(n, 1)).transpose(1, 0).contiguous()
|
|
weight = weight / pre_quant_scale
|
|
return weight
|
|
|
|
def get_scale(weight):
|
|
weight = weight.T.contiguous()
|
|
[n, k] = weight.shape
|
|
weight = weight.reshape(n, int(k / group_size), group_size)
|
|
weight = torch.abs(weight.reshape(-1, group_size))
|
|
amax, idx = weight.max(1)
|
|
amax = amax.reshape(n, int(k / group_size)).T.contiguous()
|
|
return amax / 8
|
|
|
|
def reSmooth_and_get_scale(weight, pre_quant_scale, avg_pre_quant_scale):
|
|
weight = deSmooth(weight, pre_quant_scale)
|
|
weight = reSmooth(weight, avg_pre_quant_scale)
|
|
scale = get_scale(weight)
|
|
return weight, scale
|
|
|
|
def process_and_assign_qkv_weight(awq_gpt_j, prefix, mOp):
|
|
q_weight = awq_gpt_j[prefix + "attn.q_proj.weight"].T.contiguous()
|
|
k_weight = awq_gpt_j[prefix + "attn.k_proj.weight"].T.contiguous()
|
|
v_weight = awq_gpt_j[prefix + "attn.v_proj.weight"].T.contiguous()
|
|
k = q_weight.shape[0]
|
|
|
|
q_weight = q_weight.split(q_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
k_weight = k_weight.split(k_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
v_weight = v_weight.split(v_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
|
|
q_pre_quant_scale = awq_gpt_j[
|
|
prefix + "attn.q_proj.input_quantizer._pre_quant_scale"].reshape(
|
|
(1, k))
|
|
k_pre_quant_scale = awq_gpt_j[
|
|
prefix + "attn.k_proj.input_quantizer._pre_quant_scale"].reshape(
|
|
(1, k))
|
|
v_pre_quant_scale = awq_gpt_j[
|
|
prefix + "attn.v_proj.input_quantizer._pre_quant_scale"].reshape(
|
|
(1, k))
|
|
|
|
qkv_pre_quant_scale = (q_pre_quant_scale + k_pre_quant_scale +
|
|
v_pre_quant_scale) / 3.0
|
|
q_weight, q_scale = reSmooth_and_get_scale(q_weight, q_pre_quant_scale,
|
|
qkv_pre_quant_scale)
|
|
k_weight, k_scale = reSmooth_and_get_scale(k_weight, k_pre_quant_scale,
|
|
qkv_pre_quant_scale)
|
|
v_weight, v_scale = reSmooth_and_get_scale(v_weight, v_pre_quant_scale,
|
|
qkv_pre_quant_scale)
|
|
|
|
qkv_weights = torch.cat((q_weight, k_weight, v_weight), dim=1)
|
|
qkv_scale = torch.cat((q_scale, k_scale, v_scale), dim=1)
|
|
|
|
mOp.pre_quant_scale.value = qkv_pre_quant_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
mOp.qweight.value = AWQ_quantize_pack_preprocess(qkv_weights, qkv_scale)
|
|
mOp.scale.value = qkv_scale.to(torch_dtype).cpu().numpy()
|
|
|
|
#check if we need to pad vocab
|
|
v = awq_gpt_j.get('transformer.wte.weight')
|
|
[vocab_size, k] = v.shape
|
|
pad_vocab = False
|
|
pad_vocab_size = vocab_size
|
|
if vocab_size % 64 != 0:
|
|
pad_vocab = True
|
|
pad_vocab_size = int((vocab_size + 63) / 64) * 64
|
|
if pad_vocab:
|
|
new_v = torch.zeros([pad_vocab_size, k])
|
|
new_v[:vocab_size, :] = v
|
|
v = new_v
|
|
tensorrt_llm_gpt_j.embedding.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
n_layer = config["n_layer"]
|
|
|
|
for layer_idx in range(n_layer):
|
|
prefix = "transformer.h." + str(layer_idx) + "."
|
|
tensorrt_llm.logger.info(f'Process weights in layer: {layer_idx}')
|
|
for idx, awq_attr in enumerate(awq_gptj_block_names):
|
|
v = awq_gpt_j[prefix + awq_attr]
|
|
if awq_attr == "mlp.fc_in.bias":
|
|
v = v.split(v.shape[0] // mapping.tp_size, dim=0)[mapping.rank]
|
|
elif awq_attr == "mlp.fc_out.bias":
|
|
v = torch.zeros_like(v) if mapping.rank != 0 else v
|
|
layer = attrgetter(tensorrt_llm_model_gptj_block_names[idx])(
|
|
tensorrt_llm_gpt_j.layers[layer_idx])
|
|
setattr(layer, 'value', v.to(torch_dtype).cpu().numpy())
|
|
|
|
# Attention QKV Linear
|
|
# concatenate the Q, K, V layers weights.
|
|
process_and_assign_qkv_weight(
|
|
awq_gpt_j, prefix,
|
|
tensorrt_llm_gpt_j.layers[layer_idx].attention.qkv)
|
|
|
|
# Attention Dense (out_proj) Linear
|
|
mPrefix = prefix + "attn.out_proj"
|
|
mOp = tensorrt_llm_gpt_j.layers[layer_idx].attention.dense
|
|
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 0)
|
|
|
|
# MLP Dense (mlp.fc) Linear
|
|
mPrefix = prefix + "mlp.fc_in"
|
|
mOp = tensorrt_llm_gpt_j.layers[layer_idx].mlp.fc
|
|
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 1)
|
|
|
|
# MLP Dense (mlp.proj) Linear
|
|
mPrefix = prefix + "mlp.fc_out"
|
|
mOp = tensorrt_llm_gpt_j.layers[layer_idx].mlp.proj
|
|
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 0)
|
|
|
|
if use_int8_kv_cache:
|
|
assert ft_model_dir, "You must pass --ft_model_dir to tell TRT-LLM where to look for scales of INT8 kv cache."
|
|
t = fromfile(
|
|
ft_model_dir, 'model.layers.' + str(layer_idx) +
|
|
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
|
|
np.float32)
|
|
assert t is not None, f"{ft_model_dir} does not contain model.layers.{layer_idx}.attention.query_key_value.scale_y_quant_orig.bin"
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.kv_orig_quant_scale.value = 1.0 / t
|
|
tensorrt_llm_gpt_j.layers[
|
|
layer_idx].attention.kv_quant_orig_scale.value = t
|
|
|
|
v = awq_gpt_j['transformer.ln_f.weight']
|
|
tensorrt_llm_gpt_j.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
v = awq_gpt_j['transformer.ln_f.bias']
|
|
tensorrt_llm_gpt_j.ln_f.bias.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
#lm_head
|
|
if pad_vocab:
|
|
weight = awq_gpt_j['lm_head.weight']
|
|
[vocab_size, k] = weight.shape
|
|
new_weight = torch.zeros([pad_vocab_size, k])
|
|
new_weight[:vocab_size, :] = weight
|
|
new_weight = new_weight.T.contiguous()
|
|
new_weight = new_weight.split(new_weight.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
amax = awq_gpt_j['lm_head.weight_quantizer._amax'].reshape(
|
|
[vocab_size, int(k / group_size)])
|
|
new_amax = torch.ones([pad_vocab_size, int(k / group_size)])
|
|
new_amax[:vocab_size, :] = amax
|
|
new_amax = new_amax.T.contiguous()
|
|
new_amax = new_amax.split(new_amax.shape[1] // mapping.tp_size,
|
|
dim=1)[mapping.tp_rank]
|
|
new_scale = new_amax / 8
|
|
tensorrt_llm_gpt_j.lm_head.qweight.value = AWQ_quantize_pack_preprocess(
|
|
new_weight, new_scale)
|
|
tensorrt_llm_gpt_j.lm_head.scale.value = new_scale.to(
|
|
torch_dtype).cpu().numpy()
|
|
tensorrt_llm_gpt_j.lm_head.pre_quant_scale.value = awq_gpt_j[
|
|
'lm_head.input_quantizer._pre_quant_scale'].to(
|
|
torch_dtype).cpu().numpy()
|
|
|
|
bias = awq_gpt_j['lm_head.bias']
|
|
new_bias = torch.zeros([pad_vocab_size])
|
|
new_bias[:vocab_size] = bias
|
|
new_bias = new_bias.split(pad_vocab_size // mapping.tp_size,
|
|
dim=0)[mapping.tp_rank]
|
|
tensorrt_llm_gpt_j.lm_head.bias.value = new_bias.to(
|
|
torch_dtype).cpu().numpy()
|
|
else:
|
|
mPrefix = "lm_head"
|
|
mOp = tensorrt_llm_gpt_j.lm_head
|
|
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 1)
|
|
|
|
v = awq_gpt_j['lm_head.bias']
|
|
tensorrt_llm_gpt_j.lm_head.bias.value = v.to(torch_dtype).cpu().numpy()
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|