TensorRT-LLMs/examples/qwen/benchmark.py
2023-12-01 22:27:51 +08:00

403 lines
15 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Benchmark offline inference throughput."""
import argparse
import json
import os
import random
import time
from typing import List, Tuple
import torch
from tqdm import tqdm, trange
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from utils.utils import get_stop_words_ids, make_context
import tensorrt_llm
from tensorrt_llm.runtime import ModelRunner, SamplingConfig
now_dir = os.path.dirname(os.path.abspath(__file__))
MAX_INPUT_LEN = 2048
MAX_SEQ_LEN = 4096
TRT_MAX_BATCH_SIZE = 2
TEMPERATURE = 1.0
TOP_P = 0.5
TOP_K = 1
def sample_requests(
tokenizer: PreTrainedTokenizerBase,
dataset_path: str,
num_requests: int,
chat_format: str = "chatml",
) -> List[Tuple[str, int, int]]:
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Tokenize the prompts and completions.
tokenized_dataset = []
for i in trange(len(dataset), desc="Tokenizing for sample"):
prompt = dataset[i][0]
output_text = dataset[i][1]
raw_text, prompt_tokens = make_context(tokenizer=tokenizer,
query=prompt,
max_input_length=MAX_INPUT_LEN,
chat_format=chat_format)
new_token_len = len(tokenizer(output_text).input_ids)
tokenized_dataset.append((raw_text, prompt_tokens, new_token_len))
# Filter out too long sequences.
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, new_token_len in tokenized_dataset:
prompt_len = len(prompt_token_ids)
if prompt_len < 4 or new_token_len < 4:
# Prune too short sequences.
continue
if prompt_len > MAX_INPUT_LEN or (prompt_len +
new_token_len) > MAX_SEQ_LEN:
# Prune too long sequences.
continue
# limit by MAX_SEQ_LEN
filtered_dataset.append((prompt, prompt_len, new_token_len))
# Sample the requests.
sampled_requests = random.sample(filtered_dataset, num_requests)
return sampled_requests
def run_trt_llm(
requests: List[Tuple[str, int, int]],
engine_dir: str,
tokenizer_dir: str,
n: int,
max_batch_size: int,
) -> float:
global_max_input_len = MAX_INPUT_LEN
global_max_output_len = MAX_SEQ_LEN
if max_batch_size > TRT_MAX_BATCH_SIZE:
raise Exception(
"max batch size {} must be lower than trt_max_batch_size {}".format(
max_batch_size, TRT_MAX_BATCH_SIZE))
# Ad hoc update to ModelRunner
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_dir,
legacy=False,
trust_remote_code=True,
)
gen_config_path = os.path.join(tokenizer_dir, 'generation_config.json')
with open(gen_config_path, 'r') as f:
gen_config = json.load(f)
top_k = gen_config['top_k']
top_p = gen_config['top_p']
chat_format = gen_config['chat_format']
if chat_format == "raw":
eos_token_id = gen_config['eos_token_id']
pad_token_id = gen_config['pad_token_id']
elif chat_format == "chatml":
pad_token_id = eos_token_id = tokenizer.im_end_id
else:
raise Exception("unknown chat format ", chat_format)
sampling_config = SamplingConfig(
end_id=eos_token_id,
pad_id=pad_token_id,
num_beams=1,
top_k=top_k,
top_p=top_p,
)
runtime_rank = tensorrt_llm.mpi_rank()
runner = ModelRunner.from_dir(engine_dir, rank=runtime_rank)
decoder = runner.session
# Add the requests to the engine.
sampling_config.num_beams = n
sampling_config.temperature = 0.0 if n > 1 else TEMPERATURE
sampling_config.top_p = TOP_P
sampling_config.top_k = TOP_K
start = time.time()
pad_id = tokenizer.im_end_id
batch: List[str] = []
max_new_tokens = 0
total_num_tokens = []
for i, (prompt, prompt_len, new_token_len) in tqdm(enumerate(requests),
total=len(requests)):
# Add the prompt to the batch.
batch.append(prompt)
max_new_tokens = max(max_new_tokens, new_token_len)
if len(batch) < max_batch_size and i < len(requests) - 1:
continue
input_ids = []
input_lengths = []
for input_text in batch:
input_id = tokenizer(
input_text,
return_tensors="pt",
truncation=True,
max_length=global_max_input_len,
).input_ids.type(torch.int32)
input_ids.append(input_id)
input_lengths.append(input_id.shape[-1])
# padding
max_length = max(input_lengths)
# do padding, should move outside the profiling to prevent the overhead
for i in range(len(input_ids)):
pad_size = max_length - input_lengths[i]
pad = torch.ones([1, pad_size]).type(torch.int32) * pad_id
input_ids[i] = torch.cat([torch.IntTensor(input_ids[i]), pad],
axis=-1)
# do inference
input_ids = torch.cat(input_ids, axis=0).cuda()
input_lengths = torch.IntTensor(input_lengths).type(torch.int32).cuda()
output_ids = decoder.generate(
input_ids=input_ids,
input_lengths=input_lengths,
sampling_config=sampling_config,
max_new_tokens=min(max_new_tokens,
global_max_output_len - input_ids.shape[1]),
)
pure_output_ids = []
for i in range(len(batch)):
temp_ids = output_ids[i, input_lengths[i]:]
pure_ids = []
for i in range(len(temp_ids)):
if temp_ids[i] in [tokenizer.im_start_id, tokenizer.im_end_id]:
pure_ids = temp_ids[:i + 1]
break
if len(pure_ids) == 0:
pure_ids = temp_ids
pure_output_ids.append(pure_ids)
# get the output text
output_texts = [
tokenizer.decode(out_ids, skip_special_tokens=True)
for out_ids in pure_output_ids
]
# get the total num of tokens
output_lengths = [len(out_ids) for out_ids in pure_output_ids]
assert len(output_lengths) == len(batch)
for input_len, new_token_len in zip(input_lengths, output_lengths):
total_num_tokens.append(input_len + new_token_len)
batch = []
max_new_tokens = 0
end = time.time()
during = end - start
sum_total_num_tokens = sum(total_num_tokens)
return during, sum_total_num_tokens
def run_hf(
requests: List[Tuple[str, int, int]],
model: str,
tokenizer: PreTrainedTokenizerBase,
n: int,
max_batch_size: int,
chat_format: str = "chatml",
) -> float:
global_max_input_len = MAX_INPUT_LEN
global_max_output_len = MAX_SEQ_LEN
llm = AutoModelForCausalLM.from_pretrained(model,
torch_dtype=torch.bfloat16,
trust_remote_code=True)
if llm.config.model_type == "llama":
# To enable padding in the HF backend.
tokenizer.pad_token = tokenizer.eos_token
elif llm.config.model_type == "qwen":
tokenizer.pad_token = tokenizer.decode(tokenizer.im_end_id)
llm = llm.cuda()
stop_words_ids = []
stop_words_ids.extend(get_stop_words_ids(chat_format, tokenizer))
stop_words_ids2 = [idx for ids in stop_words_ids for idx in ids]
pbar = tqdm(total=len(requests))
start = time.time()
total_num_tokens = []
batch: List[str] = []
input_lengths: List[int] = []
max_prompt_len = 0
max_new_tokens = 0
for i in range(len(requests)):
prompt, prompt_len, new_token_len = requests[i]
# Add the prompt to the batch.
batch.append(prompt)
input_lengths.append(prompt_len)
max_prompt_len = max(max_prompt_len, prompt_len)
max_new_tokens = max(max_new_tokens, new_token_len)
if len(batch) < max_batch_size and i != len(requests) - 1:
# Check if we can add more requests to the batch.
_, next_prompt_len, next_output_len = requests[i + 1]
temp_input_max = max(max_prompt_len, next_prompt_len)
temp_new_token_max = max(max_new_tokens, next_output_len)
if temp_input_max <= global_max_input_len and \
(temp_input_max + temp_new_token_max) <= global_max_output_len:
continue
# Generate the sequences.
input_ids = tokenizer(
batch,
return_tensors="pt",
padding=True,
truncation=True,
max_length=global_max_input_len,
).input_ids
# limit the max_new_tokens
max_new_tokens = min(max_new_tokens,
global_max_output_len - input_ids.shape[1])
llm_outputs = llm.generate(
input_ids=input_ids.cuda(),
do_sample=True,
stop_words_ids=stop_words_ids,
num_return_sequences=n,
top_k=TOP_K,
top_p=TOP_P,
temperature=TEMPERATURE,
use_cache=True,
max_new_tokens=max_new_tokens,
)
pure_output_ids = llm_outputs[:, input_ids.shape[-1]:]
# get the output text
output_texts = tokenizer.batch_decode(pure_output_ids,
skip_special_tokens=True)
output_lengths = []
for out_ids in pure_output_ids:
early_stop = False
for i in range(len(out_ids)):
if out_ids[i] in stop_words_ids2:
output_lengths.append(i + 1)
early_stop = True
break
if not early_stop:
output_lengths.append(len(out_ids))
assert len(output_lengths) == len(batch)
for input_len, new_token_len in zip(input_lengths, output_lengths):
total_num_tokens.append(input_len + new_token_len)
pbar.update(len(batch))
# Clear the batch.
batch = []
input_lengths = []
max_prompt_len = 0
max_new_tokens = 0
end = time.time()
during = end - start
sum_total_num_tokens = sum(total_num_tokens)
return during, sum_total_num_tokens
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_dir,
padding_side='left',
trust_remote_code=True,
)
requests = sample_requests(tokenizer=tokenizer,
dataset_path=args.dataset,
num_requests=args.num_prompts,
chat_format=args.chat_format)
if args.backend == "trt_llm":
elapsed_time, total_num_tokens = run_trt_llm(
requests=requests,
engine_dir=args.engine_dir,
tokenizer_dir=args.tokenizer_dir,
n=args.n,
max_batch_size=args.trt_max_batch_size,
)
elif args.backend == "hf":
elapsed_time, total_num_tokens = run_hf(
requests=requests,
model=args.hf_model_dir,
tokenizer=tokenizer,
n=args.n,
max_batch_size=args.hf_max_batch_size,
)
else:
raise ValueError(f"Unknown backend: {args.backend}")
print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
f"{total_num_tokens / elapsed_time:.2f} tokens/s")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument(
"--backend",
type=str,
choices=["trt_llm", "hf"],
default="trt_llm",
)
parser.add_argument("--dataset",
type=str,
default=os.path.join(
now_dir,
"ShareGPT_V3_unfiltered_cleaned_split.json"),
help="Path to the dataset.")
parser.add_argument("--hf_model_dir", type=str, default=None)
parser.add_argument("--tokenizer_dir",
type=str,
default=".",
help="Directory containing the tokenizer.model.")
parser.add_argument('--engine_dir', type=str, default='qwen_outputs')
parser.add_argument("--n",
type=int,
default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--num-prompts",
type=int,
default=100,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hf_max_batch_size",
type=int,
default=1,
help="Maximum batch size for HF backend.")
parser.add_argument("--trt_max_batch_size",
type=int,
default=1,
help="Maximum batch size for TRT-LLM backend.")
parser.add_argument("--chat-format",
type=str,
default="chatml",
choices=["chatml", "raw"],
help="choice the model format, base or chat")
args = parser.parse_args()
if args.backend == "trt-llm":
if args.trt_max_batch_size is None:
raise ValueError(
"trt max batch size is required for TRT-LLM backend.")
elif args.backend == "hf":
if args.hf_max_batch_size is None:
raise ValueError("hf max batch size is required for HF backend.")
if args.tokenizer_dir is None:
args.tokenizer_dir = args.hf_model
main(args)