mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
290 lines
12 KiB
Python
290 lines
12 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from enum import IntEnum
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
|
|
from tensorrt_llm._utils import str_dtype_to_trt
|
|
|
|
from .._common import default_trtnet
|
|
from ..functional import _create_tensor, allreduce
|
|
from ..module import Module
|
|
from ..parameter import Parameter
|
|
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
|
|
from ..quantization import QuantMode
|
|
from .linear import ColumnLinear
|
|
|
|
activation_str_to_int_map = {
|
|
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_kernels.h
|
|
"gelu": 0,
|
|
"gelu_new": 0,
|
|
"relu": 1,
|
|
"silu": 2,
|
|
"swiglu": 3,
|
|
"geglu": 4,
|
|
"identity": 5,
|
|
}
|
|
|
|
|
|
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.h
|
|
class MOEParallelismMode(IntEnum):
|
|
NONE = 0
|
|
EXPERT_PARALLEL = 1
|
|
TENSOR_PARALLEL = 2
|
|
|
|
|
|
class MOEExpertScaleNormalizationMode(IntEnum):
|
|
NONE = 0
|
|
RENORMALIZE = 1
|
|
|
|
|
|
def is_gated_activation(activation_str):
|
|
return activation_str in ("swiglu", "geglu")
|
|
|
|
|
|
def _moe_plugin(
|
|
hidden_states,
|
|
routing,
|
|
finished,
|
|
expert_weight_1,
|
|
expert_weight_2,
|
|
expert_bias_1,
|
|
expert_bias_2,
|
|
expert_scale_1,
|
|
expert_scale_2,
|
|
num_experts,
|
|
top_k,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
act_fn,
|
|
dtype,
|
|
weight_dtype, # TODO Is this the right way to do this API?
|
|
tp_size=1,
|
|
tp_group=None,
|
|
tp_rank=0,
|
|
parallelism_mode=MOEParallelismMode.TENSOR_PARALLEL,
|
|
normalization_mode=MOEExpertScaleNormalizationMode.NONE):
|
|
if isinstance(dtype, str):
|
|
dtype = str_dtype_to_trt(dtype)
|
|
|
|
# Create the plugin with our required state
|
|
p_num_experts = trt.PluginField("number_of_experts",
|
|
np.array(num_experts, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_top_k = trt.PluginField("top_k", np.array(top_k, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_expert_hidden_size = trt.PluginField(
|
|
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_expert_inter_size = trt.PluginField(
|
|
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_activation_type = trt.PluginField(
|
|
"activation_type",
|
|
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
|
|
dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_weight_type_id = trt.PluginField(
|
|
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_use_finished = trt.PluginField(
|
|
"use_finished", np.array([int(finished is not None)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_use_bias = trt.PluginField(
|
|
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_parallelism_mode = trt.PluginField(
|
|
"parallelism_mode", np.array(parallelism_mode, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_normalization_mode = trt.PluginField(
|
|
"normalization_mode", np.array(normalization_mode, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
pfc = trt.PluginFieldCollection([
|
|
p_num_experts, p_top_k, p_expert_hidden_size, p_expert_inter_size,
|
|
p_activation_type, p_type_id, p_weight_type_id, p_use_finished,
|
|
p_use_bias, p_tp_size, p_tp_rank, p_parallelism_mode,
|
|
p_normalization_mode
|
|
])
|
|
|
|
# Create the plugin with our constant inputs to the constructor
|
|
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
|
|
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
|
|
assert plugin_creator is not None
|
|
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
|
|
|
|
# Instantiate the plugin with our specific inputs
|
|
plugin_inputs = [
|
|
hidden_states, routing, expert_weight_1.value, expert_weight_2.value
|
|
]
|
|
|
|
if expert_bias_1:
|
|
assert expert_bias_2
|
|
plugin_inputs += [expert_bias_1.value, expert_bias_2.value]
|
|
|
|
if finished is not None:
|
|
plugin_inputs += [finished]
|
|
|
|
# Add conditional inputs
|
|
if expert_scale_1 is not None:
|
|
assert expert_scale_2
|
|
plugin_inputs += [expert_scale_1.value, expert_scale_2.value]
|
|
|
|
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
|
|
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
|
|
for ii in range(layer.num_inputs):
|
|
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
|
|
layer.get_input(ii).set_dynamic_range(-127, 127)
|
|
output = _create_tensor(layer.get_output(0), layer)
|
|
return output
|
|
|
|
|
|
class MixtureOfExperts(Module):
|
|
|
|
def __init__(self,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
ffn_hidden_size: int,
|
|
hidden_act: int,
|
|
top_k: int,
|
|
bias: bool = True,
|
|
dtype=None,
|
|
tp_group: List[int] = None,
|
|
tp_size: int = 1,
|
|
tp_rank: int = 0,
|
|
instance_id: int = 0,
|
|
parallelism_mode=MOEParallelismMode.TENSOR_PARALLEL,
|
|
normalization_mode=MOEExpertScaleNormalizationMode.NONE,
|
|
quant_mode=QuantMode(0)):
|
|
super().__init__()
|
|
|
|
self.num_experts = num_experts
|
|
|
|
self.top_k = top_k
|
|
self.hidden_act = hidden_act
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.dtype = dtype
|
|
self.weight_dtype = dtype
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.tp_rank = tp_rank
|
|
self.instance_id = instance_id
|
|
self.parallelism_mode = parallelism_mode
|
|
self.normalization_mode = normalization_mode
|
|
|
|
if self.num_experts % self.tp_size != 0:
|
|
raise ValueError(
|
|
"MixtureOfExperts - Number of experts {} is not a multiple of TP size {}"
|
|
.format(self.num_experts, self.tp_size))
|
|
experts_per_node = num_experts // tp_size
|
|
|
|
if quant_mode.is_int8_weight_only():
|
|
self.weight_dtype = trt.int8
|
|
elif quant_mode.is_int4_weight_only():
|
|
raise ValueError(
|
|
"MixtureOfExperts - int4 weight quantization is not supported")
|
|
|
|
# TODO We do the routing in parallel and gather afterwards since the softmax needs the results from all threads
|
|
# we need to determine if its worthwhile, or if there is some more intelligent way we can do the routing
|
|
self.router = ColumnLinear(
|
|
hidden_size,
|
|
num_experts,
|
|
bias=False,
|
|
dtype=dtype, # TODO Quantization here or not?
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=True)
|
|
|
|
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
|
|
# The left matrix is a linear projection (no activation applied)
|
|
# The right matrix is the gating value (activation applied)
|
|
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
|
|
expert_1_out_size = ffn_hidden_size * 2 if is_gated_activation(
|
|
hidden_act) else ffn_hidden_size
|
|
# Note that the in/out features is transposed compared to an MLP
|
|
# This is the order the plugin expects, we should revisit to determine if this is the most efficient choice
|
|
self.experts_weight_1 = Parameter(shape=(experts_per_node, hidden_size,
|
|
expert_1_out_size),
|
|
dtype=self.weight_dtype)
|
|
self.experts_weight_2 = Parameter(shape=(experts_per_node,
|
|
ffn_hidden_size, hidden_size),
|
|
dtype=self.weight_dtype)
|
|
|
|
if quant_mode.is_weight_only():
|
|
self.experts_scale_1 = Parameter(shape=(experts_per_node,
|
|
expert_1_out_size),
|
|
dtype=dtype)
|
|
self.experts_scale_2 = Parameter(shape=(experts_per_node,
|
|
hidden_size),
|
|
dtype=dtype)
|
|
else:
|
|
self.register_parameter('experts_scale_1', None)
|
|
self.register_parameter('experts_scale_2', None)
|
|
|
|
# Note: the bias uses dtype NOT weight_dtype, i.e. it is not quantized
|
|
if bias:
|
|
self.experts_bias_1 = Parameter(shape=(experts_per_node,
|
|
expert_1_out_size),
|
|
dtype=dtype)
|
|
self.experts_bias_2 = Parameter(shape=(experts_per_node,
|
|
hidden_size),
|
|
dtype=dtype)
|
|
else:
|
|
self.register_parameter('experts_bias_1', None)
|
|
self.register_parameter('experts_bias_2', None)
|
|
|
|
def forward(self, hidden_states, finished=None, workspace=None):
|
|
routing = self.router(hidden_states)
|
|
output = _moe_plugin(hidden_states,
|
|
routing,
|
|
expert_weight_1=self.experts_weight_1,
|
|
expert_weight_2=self.experts_weight_2,
|
|
expert_bias_1=self.experts_bias_1,
|
|
expert_bias_2=self.experts_bias_2,
|
|
expert_scale_1=self.experts_scale_1,
|
|
expert_scale_2=self.experts_scale_2,
|
|
finished=finished,
|
|
num_experts=self.num_experts,
|
|
top_k=self.top_k,
|
|
hidden_size=self.hidden_size,
|
|
ffn_hidden_size=self.ffn_hidden_size,
|
|
act_fn=self.hidden_act,
|
|
dtype=self.dtype,
|
|
weight_dtype=self.weight_dtype,
|
|
tp_size=self.tp_size,
|
|
tp_rank=self.tp_rank,
|
|
parallelism_mode=self.parallelism_mode,
|
|
normalization_mode=self.normalization_mode)
|
|
|
|
if self.tp_size > 1 and self.tp_group is not None:
|
|
output = allreduce(output,
|
|
self.tp_group,
|
|
workspace=workspace,
|
|
instance_id=self.instance_id)
|
|
|
|
return output
|
|
|
|
|
|
MOE = MixtureOfExperts
|