TensorRT-LLMs/benchmarks/python/base_benchmark.py
Kaiyu Xie 728cc0044b
Update TensorRT-LLM (#1233)
* Update TensorRT-LLM

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-05 18:32:53 +08:00

201 lines
8.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import subprocess
import time
from collections import OrderedDict
import torch
import tensorrt_llm
from tensorrt_llm.logger import logger
from tensorrt_llm.quantization import QuantMode
def get_compute_cap():
output = subprocess.check_output(
['nvidia-smi', "--query-gpu=compute_cap", "--format=csv"])
_, csv_value, *_ = output.splitlines()
return str(int(float(csv_value) * 10))
def get_csv_filename(model, dtype, tp_size, mode, **kwargs):
sm = get_compute_cap()
if len(kwargs) == 0:
kw_pairs = ""
else:
kw_pairs = "_" + "_".join([str(k) + str(v) for k, v in kwargs.items()])
return f'{model}_{dtype}_tp{tp_size}_{mode}{kw_pairs}_sm{sm}.csv'
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
# engine object is already complies with python buffer protocol, no need to
# convert it to bytearray before write, converting to bytearray consumes lots of memory
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
class BaseBenchmark(object):
def __init__(self,
engine_dir,
model_name,
dtype,
rank,
world_size,
serial_build: bool = False):
self.engine_dir = engine_dir
self.model_name = model_name
self.dtype = dtype
self.runtime_rank = rank
self.world_size = world_size
self.engine_model_name = model_name
self.quant_mode = QuantMode(0)
self.enable_fp8 = False
if engine_dir is not None:
# Read config from engine directory
config_path = os.path.join(engine_dir, 'config.json')
with open(config_path, 'r') as f:
self.config = json.load(f)
# Sanity checks
if 'pretrained_config' in self.config: # new build api branch
config_dtype = self.config['pretrained_config']['dtype']
assert dtype == config_dtype, f"Engine dtype ({config_dtype}) != Runtime dtype ({dtype})"
world_size = self.config['pretrained_config']['mapping'][
'world_size']
assert world_size == self.world_size, \
(f'Engine world size ({world_size}) != Runtime world size ({self.world_size})')
# Load config into self
for key, value in self.config['pretrained_config'].items():
setattr(self, key, value)
self.quant_mode = QuantMode.from_quant_algo(
quant_algo=self.quantization['quant_algo'],
kv_cache_quant_algo=self.quantization['kv_cache_quant_algo']
)
self.enable_fp8 = self.quant_mode.has_fp8_qdq()
self.fp8_kv_cache = self.quant_mode.has_fp8_kv_cache()
for key, value in self.config['build_config'].items():
setattr(self, key, value)
for key, value in self.plugin_config.items():
if "plugin" in key:
key = "use_" + key
setattr(self, key, value)
self.engine_name = f"rank{self.runtime_rank}.engine"
self.num_kv_heads = self.num_key_value_heads
self.num_layers = self.num_hidden_layers
self.num_heads = self.num_attention_heads
else:
# Read config from engine directory
config_path = os.path.join(engine_dir, 'config.json')
with open(config_path, 'r') as f:
self.config = json.load(f)
# Sanity checks
config_dtype = self.config['builder_config']['precision']
assert dtype == config_dtype, f"Engine dtype ({config_dtype}) != Runtime dtype ({dtype})"
world_size = self.config['builder_config']['tensor_parallel']
assert world_size == self.world_size, \
(f'Engine world size ({world_size}) != Runtime world size ({self.world_size})')
# Load config into self
for key, value in self.config['builder_config'].items():
if key == "quant_mode":
self.quant_mode = QuantMode(value)
elif key in "name":
self.engine_model_name = value
else:
setattr(self, key, value)
self.enable_fp8 = self.quant_mode.has_fp8_qdq()
self.fp8_kv_cache = self.quant_mode.has_fp8_kv_cache()
for key, value in self.config['plugin_config'].items():
# Same effect as self.use_foo_plugin = config.json["foo_plugin"]
if "plugin" in key:
key = "use_" + key
setattr(self, key, value)
self.engine_name = get_engine_name(self.engine_model_name,
self.dtype, self.world_size,
self.runtime_rank)
else:
self.engine_name = get_engine_name(self.engine_model_name,
self.dtype, self.world_size,
self.runtime_rank)
self.runtime_mapping = tensorrt_llm.Mapping(world_size=self.world_size,
rank=self.runtime_rank,
tp_size=self.world_size)
if not serial_build:
torch.cuda.set_device(self.runtime_rank %
self.runtime_mapping.gpus_per_node)
self.csv_filename = "" # lazy init
def get_report_dict(self, benchmark_profiler=None):
report_fields = [
"model_name", "world_size", "num_heads", "num_kv_heads",
"num_layers", "hidden_size", "vocab_size", "precision",
"batch_size", "input_length", "output_length", "gpu_peak_mem(gb)",
"build_time(s)", "tokens_per_sec", "percentile95(ms)",
"percentile99(ms)", "latency(ms)", "compute_cap"
]
report_dict = OrderedDict.fromkeys(report_fields)
report_dict["model_name"] = self.model_name
report_dict["world_size"] = self.world_size
report_dict["precision"] = self.dtype
report_dict["quantization"] = str(self.quant_mode)
report_dict["compute_cap"] = "sm" + get_compute_cap()
return report_dict
def get_csv_filename(self):
if len(self.csv_filename) == 0:
self.csv_filename = get_csv_filename(self.model_name,
self.dtype,
self.world_size,
self.mode,
fp8linear=int(self.enable_fp8))
return self.csv_filename
def print_report_header(self, csv=False, benchmark_profiler=None):
if csv and self.runtime_rank == 0:
report_dict = self.get_report_dict(benchmark_profiler)
line = ",".join(report_dict.keys())
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
def get_config(self):
raise NotImplementedError
def prepare_inputs(self, config):
raise NotImplementedError
def run(self, inputs, config, benchmark_profiler=None):
raise NotImplementedError
def report(self, config, latency):
raise NotImplementedError