TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/gptSession.h
Kaiyu Xie 728cc0044b
Update TensorRT-LLM (#1233)
* Update TensorRT-LLM

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-05 18:32:53 +08:00

328 lines
11 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/kvCacheConfig.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/decodingMode.h"
#include "tensorrt_llm/runtime/generationInput.h"
#include "tensorrt_llm/runtime/generationOutput.h"
#include "tensorrt_llm/runtime/gptModelConfig.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <NvInferRuntime.h>
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <vector>
namespace tensorrt_llm::batch_manager
{
class TrtGptModelV1;
}
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
class KVCacheManager;
}
namespace tensorrt_llm::runtime
{
namespace utils
{
std::vector<uint8_t> loadEngine(std::string const& enginePath);
}
class IpcMemory;
class IStatefulGptDecoder;
class NcclCommunicator;
class RuntimeBuffers;
class TllmRuntime;
class GptSession
{
using KvCacheManager = batch_manager::kv_cache_manager::KVCacheManager;
using KvCacheConfig = batch_manager::kv_cache_manager::KvCacheConfig;
using TensorPtr = runtime::ITensor::SharedPtr;
using TokenGeneratedCallback = std::function<void(SizeType step, bool finished)>;
public:
using LoggerPtr = std::shared_ptr<nvinfer1::ILogger>;
//! @brief Configuration for session execution and buffer sizes.
//! `generate` may be called with batch size and beam width smaller than the configured parameters.
//! @details `maxBatchSize` will be divided by the number of micro batches to initialize each batch buffer.
class Config
{
public:
Config(SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength)
: maxBatchSize{maxBatchSize}
, maxBeamWidth{maxBeamWidth}
, maxSequenceLength{maxSequenceLength}
{
}
SizeType maxBatchSize;
SizeType maxBeamWidth;
SizeType maxSequenceLength;
bool decoderPerRequest{false};
bool cudaGraphMode{false};
KvCacheConfig kvCacheConfig{};
std::optional<SizeType> ctxMicroBatchSize = std::nullopt;
std::optional<SizeType> genMicroBatchSize = std::nullopt;
std::optional<DecodingMode> decodingMode = std::nullopt;
bool normalizeLogProbs = true;
};
//! @brief Optional profiler class to profile the generation phase of an inference request
class GenerationProfiler
{
public:
// Use a constexpr variable to resolve the ambiguous match for overloaded CudaEvent constructor
static constexpr unsigned int flags{cudaEventDefault};
GenerationProfiler()
: start(flags)
, end(flags)
{
}
CudaEvent const& getStart() const
{
return start;
}
CudaEvent const& getEnd() const
{
return end;
}
float getElapsedTimeMs()
{
start.synchronize();
end.synchronize();
float result;
TLLM_CUDA_CHECK(::cudaEventElapsedTime(&result, start.get(), end.get()));
return result;
}
private:
CudaEvent start;
CudaEvent end;
};
GptSession(Config const& sessionConfig, GptModelConfig const& modelConfig, WorldConfig const& worldConfig,
void const* engineBuffer, std::size_t engineSize, LoggerPtr logger = nullptr);
GptSession(Config const& sessionConfig, GptModelConfig const& modelConfig, WorldConfig const& worldConfig,
std::vector<uint8_t> const& engineBuffer, LoggerPtr logger = nullptr)
: GptSession(
sessionConfig, modelConfig, worldConfig, engineBuffer.data(), engineBuffer.size(), std::move(logger))
{
}
GptSession(Config const& sessionConfig, GptModelConfig const& modelConfig, WorldConfig const& worldConfig,
std::string const& engineFile, LoggerPtr logger = nullptr)
: GptSession(sessionConfig, modelConfig, worldConfig, utils::loadEngine(engineFile), std::move(logger))
{
}
[[nodiscard]] nvinfer1::ILogger& getLogger() const;
[[nodiscard]] BufferManager const& getBufferManager() const;
[[nodiscard]] GptModelConfig const& getModelConfig() const
{
return mModelConfig;
}
[[nodiscard]] WorldConfig const& getWorldConfig() const
{
return mWorldConfig;
}
[[nodiscard]] int getDevice() const noexcept
{
return mDevice;
}
[[nodiscard]] bool getNormalizeLogProbs() const noexcept
{
return mNormalizeLogProbs;
}
[[nodiscard]] nvinfer1::DataType getLogitDataType() const;
void generate(GenerationOutput& outputs, GenerationInput const& inputs, SamplingConfig const& samplingConfig,
std::shared_ptr<GenerationProfiler> const generationProfiler = nullptr);
private:
[[nodiscard]] bool useCudaGraphs()
{
return !mCudaGraphInstances.empty();
}
void generateBatched(std::vector<GenerationOutput>& microBatchesOutputs,
std::vector<GenerationInput> const& microBatchesInputs, SamplingConfig const& samplingConfig,
TokenGeneratedCallback const& onTokenGenerated, std::shared_ptr<GenerationProfiler> const generationProfiler);
void setup(Config const& sessionConfig);
void createContexts();
void createBuffers(SizeType numMicroBatches);
void createDecoders(SizeType batchSize, SizeType beamWidth, SizeType maxAttentionWindow, SizeType sinkTokenLength,
SizeType maxSequenceLength, nvinfer1::DataType logitsType, bool decoderPerRequest, SizeType numMicroBatches,
DecodingMode const& decodingMode);
void createKvCacheManager(SizeType batchSize, SizeType beamWidth, SizeType maxAttentionWindow,
SizeType sinkTokenLength, SizeType maxSequenceLength, KvCacheConfig const& config);
void createCustomAllReduceWorkspace(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength);
void executeContextStep(std::vector<GenerationInput> const& generationBatchesInputs,
std::vector<SizeType> const& generationBatchesOffsets, KvCacheManager const* kvCacheManager);
SizeType executeGenerationStep(SizeType step, std::vector<GenerationInput> const& microBatchesInputs,
std::vector<GenerationOutput>& microBatchesOutputs, std::vector<SizeType> const& microBatchOffsets,
KvCacheManager* kvCacheManager, std::vector<bool>& microBatchesFinished);
//! @brief Execute decoder on last PP rank, receive decoder output on other PP ranks.
void decoderStepAsync(SizeType decoderStep, SizeType microBatchId);
//! @brief Synchronize with the decoder and return the `shouldStop` flag.
bool shouldStopSync(SizeType batchSize, SizeType beamWidth, SizeType microBatchId);
//! @brief Collect final output ids and log probs on last PP rank and send them to first PP rank.
//! @details Receives are asynchronous on host, so synchronization is required before access.
void finalize(SizeType microBatchId);
void kvCacheAddSequences(SizeType beamWidth, SizeType microBatchId, SizeType firstBatchIdx);
//! @brief Populate outputIds and return reference to newTokens tensor
ITensor::SharedPtr initDecoder(ITensor& outputIds, GenerationInput const& inputs, GenerationOutput const& outputs,
SamplingConfig const& samplingConfig, SizeType microBatchId) const;
TokenGeneratedCallback createOnTokenGeneratedCallback(GenerationOutput& outputs);
class CudaGraphExecutor
{
public:
CudaGraphExecutor() = default;
~CudaGraphExecutor()
{
try
{
clear();
}
catch (std::exception& e)
{
TLLM_LOG_EXCEPTION(e);
}
}
bool hasInstance()
{
return mInstance != nullptr;
}
void clear();
void prepareNextGraph(TllmRuntime const& runtime, SizeType nextContextId);
void launch(CudaStream const& stream);
private:
void create(cudaGraph_t const& graph);
bool update(cudaGraph_t const& graph);
void uploadToStream(CudaStream const& stream);
cudaGraphExec_t mInstance;
};
class MicroBatchConfig
{
public:
MicroBatchConfig()
: numCtxBatches{1}
, numGenBatches{1}
, ctxBatchSize{0}
, genBatchSize{0}
{
}
explicit MicroBatchConfig(SizeType maxBatchSize, SizeType pipelineParallelism,
std::optional<SizeType> genMicroBatchSize, std::optional<SizeType> ctxMicroBatchSize);
constexpr SizeType numCtxPerGen() const
{
return numCtxBatches / numGenBatches;
}
//! @details flip-flop between 2 graph instances for each generation batch.
constexpr SizeType getGenGraphId(SizeType flipFlopId, SizeType generationBatchId) const
{
return flipFlopId * numGenBatches + generationBatchId;
}
SizeType numCtxBatches;
SizeType numGenBatches;
SizeType ctxBatchSize;
SizeType genBatchSize;
};
friend class batch_manager::TrtGptModelV1;
private:
GptModelConfig const mModelConfig;
WorldConfig const mWorldConfig;
int mDevice{-1};
std::shared_ptr<NcclCommunicator> mPipelineComm;
std::shared_ptr<CudaStream> mCommStream;
CudaEvent mCommEvent{};
// tensor parallelism with custom allreduce plugin
ITensor::SharedPtr mCommPtrs;
std::vector<std::shared_ptr<IpcMemory>> mIpcMemoryHandles;
SizeType mDecoderMaxSequenceLength{};
SizeType mDecoderMaxAttentionWindow{};
SizeType mDecoderSinkTokenLength{};
LoggerPtr mLogger;
std::shared_ptr<TllmRuntime> mRuntime;
std::shared_ptr<KvCacheManager> mKvCacheManager;
MicroBatchConfig mMicroBatchConfig;
// for each micro batch
std::vector<std::shared_ptr<IStatefulGptDecoder>> mDecoders;
std::vector<std::shared_ptr<RuntimeBuffers>> mBuffers;
std::vector<CudaEvent> mReceivedEvents;
bool mCudaGraphMode{false};
// ping-pong instances
std::vector<CudaGraphExecutor> mCudaGraphInstances;
bool mNormalizeLogProbs = true;
};
} // namespace tensorrt_llm::runtime