mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
450 lines
16 KiB
Plaintext
450 lines
16 KiB
Plaintext
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <cuda_runtime_api.h>
|
|
|
|
#include <cooperative_groups/memcpy_async.h>
|
|
#include <cuda/pipeline>
|
|
|
|
#include <cuda_bf16.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#ifdef ENABLE_FP8
|
|
#include <cuda_fp8.h>
|
|
#endif
|
|
|
|
#include "selectiveScan.h"
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
__device__ float toFloat(float f)
|
|
{
|
|
return f;
|
|
}
|
|
|
|
__device__ float toFloat(__half h)
|
|
{
|
|
return __half2float(h);
|
|
}
|
|
#ifdef ENABLE_BF16
|
|
__device__ float toFloat(__nv_bfloat16 val)
|
|
{
|
|
return __bfloat162float(val);
|
|
}
|
|
#endif
|
|
|
|
__device__ void convertAndStore(float* output, float input)
|
|
{
|
|
*output = input;
|
|
}
|
|
|
|
__device__ void convertAndStore(__half* output, float input)
|
|
{
|
|
*output = __float2half(input);
|
|
}
|
|
#ifdef ENABLE_BF16
|
|
__device__ void convertAndStore(__nv_bfloat16* output, float input)
|
|
{
|
|
*output = __float2bfloat16(input);
|
|
}
|
|
#endif
|
|
|
|
template <typename input_t, typename weight_t, int DSTATE = 16, int CHANNELS_PER_BLOCK = 128, int STAGES = 12,
|
|
int SEQ_UNROLL = 6>
|
|
__launch_bounds__(256, 1) __global__ void selective_scan_loop_kernel(SSMParamsBase params)
|
|
{
|
|
input_t* output = reinterpret_cast<input_t*>(params.out_ptr);
|
|
weight_t* state = reinterpret_cast<weight_t*>(params.x_ptr);
|
|
input_t* x = reinterpret_cast<input_t*>(params.u_ptr);
|
|
input_t* dt = reinterpret_cast<input_t*>(params.delta_ptr);
|
|
weight_t* A = reinterpret_cast<weight_t*>(params.A_ptr);
|
|
input_t* B = reinterpret_cast<input_t*>(params.B_ptr);
|
|
input_t* C = reinterpret_cast<input_t*>(params.C_ptr);
|
|
weight_t* D = reinterpret_cast<weight_t*>(params.D_ptr);
|
|
input_t* z = reinterpret_cast<input_t*>(params.z_ptr);
|
|
weight_t* dt_bias = reinterpret_cast<weight_t*>(params.delta_bias_ptr);
|
|
bool dt_softplus = params.delta_softplus;
|
|
int num_tokens = params.seqlen;
|
|
int num_channels = params.dim;
|
|
|
|
// static const int STAGES = 12;
|
|
// static const int SEQ_UNROLL = 6;
|
|
|
|
__shared__ cuda::pipeline_shared_state<cuda::thread_scope::thread_scope_block, STAGES / SEQ_UNROLL> pipeline_state;
|
|
auto block = cooperative_groups::this_thread_block();
|
|
|
|
__shared__ __align__(16) input_t sh_B[STAGES][DSTATE];
|
|
__shared__ __align__(16) input_t sh_C[STAGES][DSTATE];
|
|
|
|
__shared__ __align__(128) input_t sh_dt[STAGES][CHANNELS_PER_BLOCK];
|
|
__shared__ input_t sh_x[STAGES][CHANNELS_PER_BLOCK];
|
|
__shared__ input_t sh_z[STAGES][CHANNELS_PER_BLOCK];
|
|
|
|
__shared__ weight_t sh_D[CHANNELS_PER_BLOCK];
|
|
__shared__ weight_t sh_dt_bias[CHANNELS_PER_BLOCK];
|
|
|
|
const int channel = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const int sample = blockIdx.y; // batch id
|
|
|
|
const int seq_loops = (num_tokens + SEQ_UNROLL - 1) / SEQ_UNROLL;
|
|
|
|
const int input_matrix_row_id = sample * num_tokens;
|
|
|
|
if (threadIdx.y == 1)
|
|
{
|
|
// Data loading warps
|
|
|
|
// Bias is independent of token
|
|
sh_dt_bias[threadIdx.x] = dt_bias[channel];
|
|
// D is independent of token
|
|
if (D)
|
|
sh_D[threadIdx.x] = D[channel];
|
|
|
|
cuda::pipeline pipeline = cuda::make_pipeline(block, &pipeline_state, cuda::pipeline_role::producer);
|
|
|
|
int stage = 0;
|
|
for (int si = 0; si < seq_loops; si++)
|
|
{
|
|
|
|
pipeline.producer_acquire();
|
|
|
|
#pragma unroll
|
|
for (int token_id = si * SEQ_UNROLL; token_id < num_tokens && token_id < (si + 1) * SEQ_UNROLL; token_id++)
|
|
{
|
|
|
|
input_t* my_B = &B[input_matrix_row_id * DSTATE + token_id * DSTATE];
|
|
input_t* my_C = &C[input_matrix_row_id * DSTATE + token_id * DSTATE];
|
|
|
|
int block_channel_per_token = blockIdx.x * blockDim.x;
|
|
int block_channel
|
|
= input_matrix_row_id * num_channels + token_id * num_channels + block_channel_per_token;
|
|
|
|
if (threadIdx.x < DSTATE)
|
|
cuda::memcpy_async(&sh_B[stage][threadIdx.x], &my_B[threadIdx.x], sizeof(input_t), pipeline);
|
|
else if (threadIdx.x >= 32 && threadIdx.x < 32 + DSTATE)
|
|
cuda::memcpy_async(
|
|
&sh_C[stage][threadIdx.x - 32], &my_C[threadIdx.x - 32], sizeof(input_t), pipeline);
|
|
if (sizeof(input_t) == 4)
|
|
{
|
|
cuda::memcpy_async(&sh_dt[stage][threadIdx.x],
|
|
&dt[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t),
|
|
pipeline);
|
|
cuda::memcpy_async(&sh_x[stage][threadIdx.x],
|
|
&x[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t),
|
|
pipeline);
|
|
if (z)
|
|
cuda::memcpy_async(&sh_z[stage][threadIdx.x],
|
|
&z[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t),
|
|
pipeline);
|
|
}
|
|
else
|
|
{
|
|
// sh_dt[stage][threadIdx.x] = dt[block_channel + threadIdx.x];
|
|
if (threadIdx.x < 32)
|
|
{
|
|
int tid = threadIdx.x;
|
|
float2* block_dt = (float2*) &dt[block_channel];
|
|
cuda::memcpy_async((float2*) &sh_dt[stage][tid * 4], &block_dt[tid], sizeof(float2), pipeline);
|
|
}
|
|
// sh_x[stage][threadIdx.x] = x[block_channel + threadIdx.x];
|
|
else if (threadIdx.x < 64)
|
|
{
|
|
int tid = threadIdx.x - 32;
|
|
float2* block_x = (float2*) &x[block_channel];
|
|
cuda::memcpy_async((float2*) &sh_x[stage][tid * 4], &block_x[tid], sizeof(float2), pipeline);
|
|
}
|
|
// sh_z[stage][threadIdx.x] = z[block_channel + threadIdx.x];
|
|
else if (threadIdx.x < 96)
|
|
{
|
|
int tid = threadIdx.x - 64;
|
|
if (z)
|
|
{
|
|
float2* block_z = (float2*) &z[block_channel];
|
|
cuda::memcpy_async(
|
|
(float2*) &sh_z[stage][tid * 4], &block_z[tid], sizeof(float2), pipeline);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
}
|
|
}
|
|
|
|
stage++;
|
|
if (stage >= STAGES)
|
|
stage = 0;
|
|
}
|
|
pipeline.producer_commit();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
// Compute warps
|
|
// Load state and A matrix into registers
|
|
float state_reg[DSTATE];
|
|
float A_reg[DSTATE];
|
|
for (int i = 0; i < DSTATE; i++)
|
|
{
|
|
// state_reg[i] = toFloat(state[sample*num_channels*DSTATE + i*num_channels + channel]);
|
|
state_reg[i] = 0.f;
|
|
A_reg[i] = toFloat(A[i * num_channels + channel]);
|
|
}
|
|
|
|
cuda::pipeline pipeline = cuda::make_pipeline(block, &pipeline_state, cuda::pipeline_role::consumer);
|
|
int stage = 0;
|
|
for (int si = 0; si < seq_loops; si++)
|
|
{
|
|
|
|
pipeline.consumer_wait();
|
|
|
|
#pragma unroll
|
|
for (int token_id = si * SEQ_UNROLL; token_id < num_tokens && token_id < (si + 1) * SEQ_UNROLL; token_id++)
|
|
{
|
|
|
|
float dt_b = toFloat(sh_dt[stage][threadIdx.x]) + toFloat(sh_dt_bias[threadIdx.x]);
|
|
float dt_b_sp;
|
|
if (dt_softplus)
|
|
{
|
|
dt_b_sp = dt_b <= 20.f ? log1pf(__expf(dt_b)) : dt_b; // softplus
|
|
}
|
|
float my_x = toFloat(sh_x[stage][threadIdx.x]);
|
|
float Dx = my_x * (D ? toFloat(sh_D[threadIdx.x]) : 0.f);
|
|
float dtx = dt_b_sp * my_x;
|
|
float my_z = z ? toFloat(sh_z[stage][threadIdx.x]) : 0.f;
|
|
|
|
float out = Dx;
|
|
|
|
if (sizeof(input_t) == 4)
|
|
{
|
|
float4* B4 = (float4*) &sh_B[stage][0];
|
|
float4* C4 = (float4*) &sh_C[stage][0];
|
|
#pragma unroll
|
|
for (int i = 0; i < DSTATE / 4; i++)
|
|
{
|
|
|
|
float4 Bi4 = B4[i];
|
|
float4 Ci4 = C4[i];
|
|
|
|
float* Bi = (float*) &Bi4;
|
|
float* Ci = (float*) &Ci4;
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
float dtA = A_reg[i * 4 + j] * dt_b_sp;
|
|
float dA = __expf(dtA);
|
|
float sdA = state_reg[i * 4 + j] * dA;
|
|
float dBx = Bi[j] * dtx;
|
|
float newState = sdA + dBx;
|
|
state_reg[i * 4 + j] = newState;
|
|
out += newState * Ci[j];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float4* B8 = (float4*) &sh_B[stage][0];
|
|
float4* C8 = (float4*) &sh_C[stage][0];
|
|
#pragma unroll
|
|
for (int i = 0; i < DSTATE / 8; i++)
|
|
{
|
|
input_t* Bi = (input_t*) (&B8[i]);
|
|
input_t* Ci = (input_t*) (&C8[i]);
|
|
#pragma unroll
|
|
for (int j = 0; j < 8; j++)
|
|
{
|
|
float dtA = A_reg[i * 8 + j] * dt_b_sp;
|
|
float dA = __expf(dtA);
|
|
float sdA = state_reg[i * 8 + j] * dA;
|
|
float dBx = toFloat(Bi[j]) * dtx;
|
|
float newState = sdA + dBx;
|
|
state_reg[i * 8 + j] = newState;
|
|
out += newState * toFloat(Ci[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (z)
|
|
{
|
|
float enz = __expf(0.f - my_z);
|
|
enz += 1.0;
|
|
float sig_z = 1.0 / enz;
|
|
float silu_z = my_z * sig_z;
|
|
out *= silu_z;
|
|
}
|
|
input_t* my_output = &output[input_matrix_row_id * num_channels + token_id * num_channels];
|
|
convertAndStore(&my_output[channel], out);
|
|
|
|
stage++;
|
|
if (stage >= STAGES)
|
|
stage = 0;
|
|
}
|
|
pipeline.consumer_release();
|
|
}
|
|
// Write the new state back out to the cache
|
|
for (int i = 0; i < DSTATE; i++)
|
|
{
|
|
weight_t* my_state = &state[sample * num_channels * DSTATE];
|
|
int offset = i * num_channels + channel;
|
|
convertAndStore(&my_state[offset], state_reg[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename input_t, typename weight_t>
|
|
void invokeSelectiveScan(SSMParamsBase& params, cudaStream_t stream)
|
|
{
|
|
int samples = params.batch;
|
|
int channels = params.dim;
|
|
|
|
const int threads = 128;
|
|
const int blocks = (channels + threads - 1) / threads;
|
|
dim3 block(threads, 2);
|
|
dim3 grid(blocks, samples);
|
|
TLLM_CHECK((channels % block.x) == 0);
|
|
|
|
TLLM_CHECK(params.is_variable_B);
|
|
TLLM_CHECK(params.is_variable_C);
|
|
TLLM_CHECK(params.dstate == 16);
|
|
|
|
selective_scan_loop_kernel<input_t, weight_t><<<grid, block, 0, stream>>>(params);
|
|
}
|
|
|
|
#define INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(input_t, weight_t) \
|
|
template void invokeSelectiveScan<input_t, weight_t>(SSMParamsBase & params, cudaStream_t stream);
|
|
|
|
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(float, float);
|
|
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(half, float);
|
|
#ifdef ENABLE_BF16
|
|
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(__nv_bfloat16, float);
|
|
#endif
|
|
#undef INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename input_t, typename weight_t, int DSTATE = 16, int CHANNELS_PER_BLOCK = 128>
|
|
__launch_bounds__(128, 2) __global__ void selective_scan_update_kernel(SSMParamsBase params)
|
|
{
|
|
|
|
input_t* output = reinterpret_cast<input_t*>(params.out_ptr);
|
|
weight_t* state = reinterpret_cast<weight_t*>(params.x_ptr);
|
|
input_t* x = reinterpret_cast<input_t*>(params.u_ptr);
|
|
input_t* dt = reinterpret_cast<input_t*>(params.delta_ptr);
|
|
weight_t* A = reinterpret_cast<weight_t*>(params.A_ptr);
|
|
input_t* B = reinterpret_cast<input_t*>(params.B_ptr);
|
|
input_t* C = reinterpret_cast<input_t*>(params.C_ptr);
|
|
weight_t* D = reinterpret_cast<weight_t*>(params.D_ptr);
|
|
input_t* z = reinterpret_cast<input_t*>(params.z_ptr);
|
|
weight_t* dt_bias = reinterpret_cast<weight_t*>(params.delta_bias_ptr);
|
|
bool dt_softplus = params.delta_softplus;
|
|
int num_channels = params.dim;
|
|
|
|
const int channel = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (channel >= num_channels)
|
|
return;
|
|
const int sample = blockIdx.y;
|
|
|
|
weight_t* my_state = &state[sample * num_channels * DSTATE];
|
|
input_t* my_output = &output[sample * num_channels];
|
|
|
|
float rA[DSTATE];
|
|
float rB[DSTATE];
|
|
float rC[DSTATE];
|
|
|
|
float rState[DSTATE];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < DSTATE; i++)
|
|
{
|
|
rA[i] = toFloat(A[i * num_channels + channel]);
|
|
rB[i] = toFloat(B[sample * DSTATE + i]);
|
|
rC[i] = toFloat(C[sample * DSTATE + i]);
|
|
rState[i] = toFloat(my_state[i * num_channels + channel]);
|
|
}
|
|
|
|
float my_x, my_dt, my_z, my_dt_bias, my_D;
|
|
my_x = toFloat(x[sample * num_channels + channel]);
|
|
my_dt = toFloat(dt[sample * num_channels + channel]);
|
|
my_z = z ? toFloat(z[sample * num_channels + channel]) : 0.f;
|
|
my_dt_bias = dt_bias ? toFloat(dt_bias[channel]) : 0.f;
|
|
my_D = D ? toFloat(D[channel]) : 0.f;
|
|
|
|
float dt_b = my_dt + my_dt_bias;
|
|
float dt_b_sp;
|
|
if (dt_softplus)
|
|
{
|
|
dt_b_sp = dt_b <= 20.f ? logf(1.f + expf(dt_b)) : dt_b; // softplus
|
|
}
|
|
|
|
float out = 0.f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < DSTATE; i++)
|
|
{
|
|
float dA = expf(rA[i] * dt_b_sp);
|
|
float dB = rB[i] * dt_b_sp;
|
|
float sdA = rState[i] * dA;
|
|
float dBx = dB * my_x;
|
|
float newState = sdA + dBx;
|
|
convertAndStore(&my_state[i * num_channels + channel], newState); // Write the new state back out to the cache
|
|
out += newState * rC[i];
|
|
}
|
|
|
|
if (D)
|
|
out += my_D * my_x;
|
|
if (z)
|
|
{
|
|
float sig_z = 1.0 / (1.0 + exp(0.f - my_z));
|
|
float silu_z = my_z * sig_z;
|
|
out *= silu_z;
|
|
}
|
|
|
|
convertAndStore(&my_output[channel], out);
|
|
}
|
|
|
|
template <typename input_t, typename weight_t>
|
|
void invokeSelectiveScanUpdate(SSMParamsBase& params, cudaStream_t stream)
|
|
{
|
|
int samples = params.batch;
|
|
int channels = params.dim;
|
|
|
|
const int threads = 128;
|
|
const int blocks = (channels + threads - 1) / threads;
|
|
dim3 block(threads, 1);
|
|
dim3 grid(blocks, samples);
|
|
|
|
TLLM_CHECK(params.is_variable_B);
|
|
TLLM_CHECK(params.is_variable_C);
|
|
TLLM_CHECK(params.dstate == 16);
|
|
selective_scan_update_kernel<input_t, weight_t><<<grid, block, 0, stream>>>(params);
|
|
}
|
|
|
|
#define INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(input_t, weight_t) \
|
|
template void invokeSelectiveScanUpdate<input_t, weight_t>(SSMParamsBase & params, cudaStream_t stream)
|
|
|
|
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(float, float);
|
|
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(half, float);
|
|
#ifdef ENABLE_BF16
|
|
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(__nv_bfloat16, float);
|
|
#endif
|
|
#undef INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|