mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
330 lines
14 KiB
C++
330 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/gptJsonConfig.h"
|
|
|
|
#include "common.h"
|
|
#include "gptModelConfig.h"
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/stringUtils.h"
|
|
|
|
#include <fstream>
|
|
#include <nlohmann/json.hpp>
|
|
#include <string_view>
|
|
#include <utility>
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
namespace tc = tensorrt_llm::common;
|
|
|
|
namespace
|
|
{
|
|
using Json = typename nlohmann::json::basic_json;
|
|
|
|
template <typename FieldType>
|
|
FieldType parseJsonFieldOr(Json const& json, std::string_view name, FieldType defaultValue)
|
|
{
|
|
auto value = defaultValue;
|
|
try
|
|
{
|
|
value = json.at(name).template get<FieldType>();
|
|
}
|
|
catch (nlohmann::json::out_of_range& e)
|
|
{
|
|
TLLM_LOG_WARNING("Parameter %s cannot be read from json:", std::string(name).c_str());
|
|
TLLM_LOG_WARNING(e.what());
|
|
}
|
|
return value;
|
|
}
|
|
|
|
template <typename FieldType>
|
|
std::optional<FieldType> parseJsonFieldOptional(Json const& json, std::string_view name)
|
|
{
|
|
std::optional<FieldType> value = std::nullopt;
|
|
try
|
|
{
|
|
value = json.at(name).template get<FieldType>();
|
|
}
|
|
catch (const nlohmann::json::out_of_range& e)
|
|
{
|
|
TLLM_LOG_WARNING(e.what());
|
|
TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str());
|
|
}
|
|
catch (const nlohmann::json::type_error& e)
|
|
{
|
|
TLLM_LOG_WARNING(e.what());
|
|
TLLM_LOG_WARNING("Optional value for parameter %s will not be set.", std::string(name).c_str());
|
|
}
|
|
return value;
|
|
}
|
|
|
|
GptModelConfig createModelConfig(
|
|
Json const& json, bool engineVersionNone, SizeType tensorParallelism, nvinfer1::DataType dataType)
|
|
{
|
|
auto const& config = engineVersionNone ? json.at("builder_config") : json.at("pretrained_config");
|
|
|
|
auto const* const numLayersField = engineVersionNone ? "num_layers" : "num_hidden_layers";
|
|
auto const* const numHeadsField = engineVersionNone ? "num_heads" : "num_attention_heads";
|
|
auto const* const numKvHeadsField = engineVersionNone ? "num_kv_heads" : "num_key_value_heads";
|
|
auto const* const mlpHiddenSizeField = engineVersionNone ? "mlp_hidden_size" : "intermediate_size";
|
|
|
|
auto const numLayers = config.at(numLayersField).template get<SizeType>();
|
|
auto const numHeads = config.at(numHeadsField).template get<SizeType>() / tensorParallelism;
|
|
|
|
auto const vocabSize = config.at("vocab_size").template get<SizeType>();
|
|
auto const hiddenSize = config.at("hidden_size").template get<SizeType>() / tensorParallelism;
|
|
auto const sizePerHead = parseJsonFieldOr(config, "head_size", hiddenSize / numHeads);
|
|
|
|
// TODO:
|
|
// Code crashes when numKvHeads <= 0. Clamping downwards to 1 prevents that, make sure this is best fix.
|
|
auto const numKvHeads
|
|
= std::max(parseJsonFieldOr(config, numKvHeadsField, numHeads * tensorParallelism) / tensorParallelism, 1);
|
|
|
|
auto const mlpHiddenSize = parseJsonFieldOptional<SizeType>(config, mlpHiddenSizeField);
|
|
|
|
auto modelConfig = GptModelConfig{vocabSize, numLayers, numHeads, hiddenSize, dataType};
|
|
modelConfig.setSizePerHead(sizePerHead);
|
|
modelConfig.setNbKvHeads(numKvHeads);
|
|
|
|
if (mlpHiddenSize.has_value())
|
|
{
|
|
modelConfig.setMlpHiddenSize(mlpHiddenSize.value() / tensorParallelism);
|
|
}
|
|
|
|
return modelConfig;
|
|
};
|
|
|
|
void parseBuilderConfig(GptModelConfig& modelConfig, Json const& builderConfig)
|
|
{
|
|
auto const maxBatchSize = parseJsonFieldOr(builderConfig, "max_batch_size", 0);
|
|
auto const maxBeamWidth = parseJsonFieldOr(builderConfig, "max_beam_width", 0);
|
|
auto const maxInputLen = parseJsonFieldOr(builderConfig, "max_input_len", 0);
|
|
auto const maxSequenceLen = maxInputLen + parseJsonFieldOr(builderConfig, "max_output_len", 0);
|
|
auto const maxDraftLen = parseJsonFieldOr(builderConfig, "max_draft_len", 0);
|
|
auto const maxNumTokens = parseJsonFieldOptional<SizeType>(builderConfig, "max_num_tokens");
|
|
auto const maxPromptEmbeddingTableSize
|
|
= parseJsonFieldOr<SizeType>(builderConfig, "max_prompt_embedding_table_size", 0);
|
|
auto const computeContextLogits = parseJsonFieldOr(builderConfig, "gather_context_logits", false);
|
|
auto const computeGenerationLogits = parseJsonFieldOr(builderConfig, "gather_generation_logits", false);
|
|
|
|
modelConfig.setMaxBatchSize(maxBatchSize);
|
|
modelConfig.setMaxBeamWidth(maxBeamWidth);
|
|
modelConfig.setMaxInputLen(maxInputLen);
|
|
modelConfig.setMaxSequenceLen(maxSequenceLen);
|
|
modelConfig.setMaxNumTokens(maxNumTokens);
|
|
modelConfig.setMaxDraftLen(maxDraftLen);
|
|
modelConfig.setMaxPromptEmbeddingTableSize(maxPromptEmbeddingTableSize);
|
|
modelConfig.computeContextLogits(computeContextLogits);
|
|
modelConfig.computeGenerationLogits(computeGenerationLogits);
|
|
}
|
|
|
|
void parsePluginConfig(GptModelConfig& modelConfig, Json const& pluginConfig)
|
|
{
|
|
auto const useGptAttentionPlugin = !pluginConfig.at("gpt_attention_plugin").is_null();
|
|
auto const removeInputPadding = pluginConfig.at("remove_input_padding").template get<bool>();
|
|
auto const& pagedKvCache = pluginConfig.at("paged_kv_cache");
|
|
auto const& tokensPerBlock = pluginConfig.at("tokens_per_block");
|
|
auto const useCustomAllReduce = pluginConfig.at("use_custom_all_reduce").template get<bool>();
|
|
auto const useContextFMHAForGeneration = pluginConfig.at("use_context_fmha_for_generation").template get<bool>();
|
|
auto const pagedContextFMHA = pluginConfig.at("use_paged_context_fmha").template get<bool>();
|
|
|
|
modelConfig.useGptAttentionPlugin(useGptAttentionPlugin);
|
|
modelConfig.usePackedInput(removeInputPadding);
|
|
modelConfig.usePagedKvCache(pagedKvCache);
|
|
modelConfig.setTokensPerBlock(tokensPerBlock);
|
|
modelConfig.useCustomAllReduce(useCustomAllReduce);
|
|
modelConfig.setUseContextFMHAForGeneration(useContextFMHAForGeneration);
|
|
modelConfig.setPagedContextFMHA(pagedContextFMHA);
|
|
}
|
|
|
|
void parseLora(GptModelConfig& modelConfig, Json const& json, Json const& pluginConfig, bool engineVersionNone,
|
|
SizeType tensorParallelism)
|
|
{
|
|
auto const& config = engineVersionNone ? json.at("builder_config") : json.at("pretrained_config");
|
|
|
|
auto const loraMaxRank = parseJsonFieldOr(config, "max_lora_rank", SizeType{0});
|
|
auto const loraTargetModules = parseJsonFieldOptional<std::vector<std::string>>(config, "lora_target_modules");
|
|
|
|
if (loraTargetModules.has_value())
|
|
{
|
|
|
|
modelConfig.setLoraModules(LoraModule::createLoraModules(loraTargetModules.value(), modelConfig.getHiddenSize(),
|
|
modelConfig.getMlpHiddenSize(), modelConfig.getNbHeads(), modelConfig.getNbKvHeads(),
|
|
modelConfig.getSizePerHead(), tensorParallelism));
|
|
}
|
|
|
|
modelConfig.setMaxLoraRank(loraMaxRank);
|
|
|
|
auto useLoraPlugin = !pluginConfig.at("lora_plugin").is_null();
|
|
if (useLoraPlugin)
|
|
{
|
|
|
|
if (modelConfig.getLoraModules().empty() || modelConfig.getMaxLoraRank() == 0)
|
|
{
|
|
TLLM_LOG_WARNING("lora_plugin enabled, but no lora module enabled: setting useLoraPlugin to false");
|
|
useLoraPlugin = false;
|
|
}
|
|
}
|
|
modelConfig.useLoraPlugin(useLoraPlugin);
|
|
}
|
|
|
|
template <typename InputType>
|
|
GptJsonConfig parseJson(InputType&& input)
|
|
{
|
|
auto constexpr allowExceptions = true;
|
|
auto constexpr ignoreComments = true;
|
|
auto const json = nlohmann::json::parse(std::forward<InputType>(input), nullptr, allowExceptions, ignoreComments);
|
|
|
|
auto const engineVersion = parseJsonFieldOr(json, "version", std::string("none"));
|
|
|
|
auto const engineVersionNone = engineVersion == std::string("none");
|
|
if (engineVersionNone)
|
|
{
|
|
TLLM_LOG_INFO("No engine version found in the config file, assuming engine(s) built by old builder API.");
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_INFO("Engine version %s found in the config file, assuming engine(s) built by new builder API.",
|
|
engineVersion.c_str());
|
|
}
|
|
|
|
auto const& builderConfig = engineVersionNone ? json.at("builder_config") : json.at("build_config");
|
|
|
|
auto const name = engineVersionNone ? builderConfig.at("name").template get<std::string>()
|
|
: json.at("pretrained_config").at("architecture").template get<std::string>();
|
|
|
|
auto const tensorParallelism = engineVersionNone
|
|
? builderConfig.at("tensor_parallel").template get<SizeType>()
|
|
: json.at("pretrained_config").at("mapping").at("tp_size").template get<SizeType>();
|
|
auto const pipelineParallelism = engineVersionNone
|
|
? parseJsonFieldOr(builderConfig, "pipeline_parallel", 1)
|
|
: parseJsonFieldOr(json.at("pretrained_config").at("mapping"), "pp_size", 1);
|
|
|
|
auto const precision = engineVersionNone ? builderConfig.at("precision").template get<std::string>()
|
|
: json.at("pretrained_config").at("dtype").template get<std::string>();
|
|
|
|
auto const dataType = [&precision]()
|
|
{
|
|
if (!precision.compare("float32"))
|
|
return nvinfer1::DataType::kFLOAT;
|
|
else if (!precision.compare("float16"))
|
|
return nvinfer1::DataType::kHALF;
|
|
else if (!precision.compare("bfloat16"))
|
|
return nvinfer1::DataType::kBF16;
|
|
else
|
|
TLLM_THROW("Model data type '%s' not supported", precision.c_str());
|
|
}();
|
|
|
|
auto modelConfig = createModelConfig(json, engineVersionNone, tensorParallelism, dataType);
|
|
|
|
parseBuilderConfig(modelConfig, builderConfig);
|
|
|
|
auto const& pluginConfig = engineVersionNone ? json.at("plugin_config") : builderConfig.at("plugin_config");
|
|
parsePluginConfig(modelConfig, pluginConfig);
|
|
|
|
parseLora(modelConfig, json, pluginConfig, engineVersionNone, tensorParallelism);
|
|
|
|
if (engineVersionNone)
|
|
{
|
|
auto const quantMode
|
|
= tc::QuantMode(parseJsonFieldOr(builderConfig, "quant_mode", tc::QuantMode::none().value()));
|
|
modelConfig.setQuantMode(quantMode);
|
|
}
|
|
else
|
|
{
|
|
auto const& quantization = json.at("pretrained_config").at("quantization");
|
|
auto quantAlgo = parseJsonFieldOptional<std::string>(quantization, "quant_algo");
|
|
auto kvCacheQuantAlgo = parseJsonFieldOptional<std::string>(quantization, "kv_cache_quant_algo");
|
|
auto const quantMode = tc::QuantMode::fromQuantAlgo(quantAlgo, kvCacheQuantAlgo);
|
|
modelConfig.setQuantMode(quantMode);
|
|
}
|
|
|
|
if (engineVersionNone)
|
|
{
|
|
if (name == std::string("chatglm_6b") || name == std::string("glm_10b"))
|
|
{
|
|
modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm);
|
|
// kGlm is only for ChatGLM-6B and GLM-10B
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (name == "ChatGLMForCausalLM")
|
|
{
|
|
auto const& pretrainedConfig = json.at("pretrained_config");
|
|
auto const chatglmVersion = pretrainedConfig.at("chatglm_version").template get<std::string>();
|
|
if (chatglmVersion == "glm" || chatglmVersion == "chatglm")
|
|
{
|
|
modelConfig.setModelVariant(GptModelConfig::ModelVariant::kGlm);
|
|
// kGlm is only for ChatGLM-6B and GLM-10B
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!engineVersionNone)
|
|
{
|
|
auto const& pretrainedConfig = json.at("pretrained_config");
|
|
auto const medusaHeads = parseJsonFieldOptional<SizeType>(pretrainedConfig, "num_medusa_heads");
|
|
auto const maxDraftLen = parseJsonFieldOptional<SizeType>(pretrainedConfig, "max_draft_len");
|
|
TLLM_CHECK_WITH_INFO((medusaHeads.has_value() ^ maxDraftLen.has_value()) == 0,
|
|
"Either both num_medusa_heads and max_draft_len or none have to be provided");
|
|
if (medusaHeads.has_value() && medusaHeads.value() > 0)
|
|
{
|
|
modelConfig.setMaxDraftLen(maxDraftLen.value());
|
|
auto medusaModule = MedusaModule(medusaHeads.value(), maxDraftLen.value());
|
|
modelConfig.setMedusaModule(medusaModule);
|
|
}
|
|
}
|
|
|
|
return GptJsonConfig{name, engineVersion, precision, tensorParallelism, pipelineParallelism, modelConfig};
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::string GptJsonConfig::engineFilename(WorldConfig const& worldConfig, std::string const& model) const
|
|
{
|
|
TLLM_CHECK_WITH_INFO(getTensorParallelism() == worldConfig.getTensorParallelism(), "tensor parallelism mismatch");
|
|
TLLM_CHECK_WITH_INFO(
|
|
getPipelineParallelism() == worldConfig.getPipelineParallelism(), "pipeline parallelism mismatch");
|
|
auto pp = worldConfig.isPipelineParallel() ? "_pp" + std::to_string(worldConfig.getPipelineParallelism()) : "";
|
|
if (getVersion() == std::string("none"))
|
|
{
|
|
return model + "_" + getPrecision() + "_tp" + std::to_string(worldConfig.getTensorParallelism()) + pp + "_rank"
|
|
+ std::to_string(worldConfig.getRank()) + ".engine";
|
|
}
|
|
else
|
|
{
|
|
return "rank" + std::to_string(worldConfig.getRank()) + ".engine";
|
|
}
|
|
}
|
|
|
|
GptJsonConfig GptJsonConfig::parse(std::string const& json)
|
|
{
|
|
return parseJson(json);
|
|
}
|
|
|
|
GptJsonConfig GptJsonConfig::parse(std::istream& json)
|
|
{
|
|
return parseJson(json);
|
|
}
|
|
|
|
GptJsonConfig GptJsonConfig::parse(std::filesystem::path const& path)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(std::filesystem::exists(path), std::string("File does not exist: ") + path.string());
|
|
std::ifstream json(path);
|
|
return parse(json);
|
|
}
|