mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
93 lines
3.5 KiB
C++
93 lines
3.5 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/promptTuningParams.h"
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
void PromptTuningParams::fillTasksTensor(TensorPtr tasksHost, const SizeType batchSize,
|
|
const SizeType numContextRequests, const std::vector<SizeType>& reqBeamWidths,
|
|
const std::vector<SizeType>& reqPromptLengths, BufferManager const& manager, bool packedInput)
|
|
{
|
|
auto const& tasksHostShape = tasksHost->getShape();
|
|
TLLM_CHECK_WITH_INFO(tasksHostShape.nbDims == 1, "tasksHost expected to have dimension [batchSize]");
|
|
TLLM_CHECK_WITH_INFO(tasksHostShape.d[0] == batchSize, "tasksHost expected to have dimension [batchSize]");
|
|
|
|
auto const tasksHostPtr = bufferCast<SizeType const>(*tasksHost);
|
|
|
|
bool validInput = packedInput || numContextRequests == batchSize || numContextRequests == 0;
|
|
TLLM_CHECK_WITH_INFO(validInput,
|
|
"fillTasksTensor function with packed inputs must be called with only context requests or only generation "
|
|
"requests.");
|
|
|
|
bool validShapes = (static_cast<SizeType>(reqBeamWidths.size()) == batchSize
|
|
&& static_cast<SizeType>(reqPromptLengths.size()) == numContextRequests
|
|
&& static_cast<SizeType>(promptTuningEnabled.size()) == batchSize);
|
|
TLLM_CHECK_WITH_INFO(validShapes,
|
|
"Invalid inputs to fillTasksTensor function. reqBeamWidths and reqPtuningEnabled size must be batchSize and "
|
|
"propmtLenghts size must be numContextRequests");
|
|
|
|
SizeType totalInputSize = 0;
|
|
std::vector<SizeType> promptTasksHost;
|
|
for (SizeType bid = 0; bid < batchSize; bid++)
|
|
{
|
|
SizeType taskId = promptTuningEnabled[bid] ? tasksHostPtr[bid] : 0;
|
|
if (packedInput)
|
|
{
|
|
if (bid < numContextRequests)
|
|
{
|
|
totalInputSize += reqPromptLengths[bid];
|
|
promptTasksHost.insert(promptTasksHost.end(), reqPromptLengths[bid], taskId);
|
|
}
|
|
else
|
|
{
|
|
for (SizeType beam = 0; beam < reqBeamWidths[bid]; ++beam)
|
|
{
|
|
promptTasksHost.insert(promptTasksHost.end(), 1, taskId);
|
|
totalInputSize++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (bid < numContextRequests)
|
|
{
|
|
promptTasksHost.push_back(taskId);
|
|
++totalInputSize;
|
|
}
|
|
else
|
|
{
|
|
promptTasksHost.insert(promptTasksHost.end(), reqBeamWidths[bid], taskId);
|
|
totalInputSize += reqBeamWidths[bid];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (packedInput)
|
|
{
|
|
tasks = manager.copyFrom(
|
|
promptTasksHost, runtime::ITensor::makeShape({totalInputSize}), runtime::MemoryType::kGPU);
|
|
}
|
|
else
|
|
{
|
|
tasks = manager.copyFrom(
|
|
promptTasksHost, runtime::ITensor::makeShape({totalInputSize, 1}), runtime::MemoryType::kGPU);
|
|
}
|
|
}
|
|
|
|
} // namespace tensorrt_llm::runtime
|