mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
1302 lines
54 KiB
Python
1302 lines
54 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||
# SPDX-License-Identifier: Apache-2.0
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import argparse
|
||
import copy
|
||
import functools
|
||
import json
|
||
import os
|
||
import time
|
||
import traceback
|
||
from collections import defaultdict
|
||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||
from typing import Dict, Optional, Tuple
|
||
|
||
import numpy as np
|
||
import safetensors
|
||
import torch
|
||
import torch.nn as nn
|
||
from tqdm import tqdm
|
||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||
from transformers.pytorch_utils import Conv1D
|
||
|
||
import tensorrt_llm
|
||
from tensorrt_llm.mapping import Mapping
|
||
|
||
|
||
def parse_arguments():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--model_dir', type=str, default=None)
|
||
parser.add_argument('--quant_ckpt_path', type=str, default=None)
|
||
parser.add_argument('--tp_size', type=int, default=1)
|
||
parser.add_argument('--pp_size', type=int, default=1)
|
||
parser.add_argument('--model_version',
|
||
type=str,
|
||
default='v1_13b',
|
||
choices=['v1_7b', 'v1_13b', 'v2_7b', 'v2_13b'])
|
||
parser.add_argument('--dtype',
|
||
type=str,
|
||
default='float16',
|
||
choices=['float32', 'bfloat16', 'float16'])
|
||
parser.add_argument('--logits_dtype',
|
||
type=str,
|
||
default='float32',
|
||
choices=['float16', 'float32'])
|
||
parser.add_argument('--output_dir',
|
||
type=str,
|
||
default='tllm_checkpoint',
|
||
help='The path to save the TensorRT-LLM checkpoint')
|
||
parser.add_argument(
|
||
'--workers',
|
||
type=int,
|
||
default=1,
|
||
help='The number of workers for converting checkpoint in parallel')
|
||
parser.add_argument(
|
||
'--max_prompt_embedding_table_size',
|
||
type=int,
|
||
default=0,
|
||
help='Setting to a value > 0 enables support for prompt tuning.')
|
||
parser.add_argument(
|
||
'--per_channel',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use a single static scaling factor for the GEMM\'s result. '
|
||
'per_channel instead uses a different static scaling factor for each channel. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
'--per_token',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use a single static scaling factor to scale activations in the int8 range. '
|
||
'per_token chooses at run time, and for each token, a custom scaling factor. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
"--smoothquant",
|
||
"-sq",
|
||
type=float,
|
||
default=None,
|
||
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
|
||
" to Smoothquant the model, and output int8 weights."
|
||
" A good first try is 0.5. Must be in [0, 1]")
|
||
parser.add_argument(
|
||
'--use_weight_only',
|
||
default=False,
|
||
action="store_true",
|
||
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
||
'See --weight_only_precision to set the precision')
|
||
parser.add_argument(
|
||
'--weight_only_precision',
|
||
const='int8',
|
||
type=str,
|
||
nargs='?',
|
||
default='int8',
|
||
choices=['int8', 'int4', 'int4_gptq'],
|
||
help=
|
||
'Define the precision for the weights when using weight-only quantization.'
|
||
'You must also use --use_weight_only for that argument to have an impact.'
|
||
)
|
||
parser.add_argument('--group_size',
|
||
type=int,
|
||
default=128,
|
||
help='Group size used in GPTQ/AWQ quantization.')
|
||
parser.add_argument(
|
||
'--int8_kv_cache',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
|
||
)
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
|
||
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
|
||
"""
|
||
This function has two purposes:
|
||
- compute quantized weights, scaled either per-tensor or per-column
|
||
- compute scaling factors
|
||
|
||
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
||
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
||
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
||
|
||
Here is the list of what we need (T means per-tensor, C per-column):
|
||
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
||
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
||
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
||
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
||
to quant range (int8) (used for CUBLAS) (T, C)
|
||
|
||
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
||
but then the model would change depending on the number of GPUs used.
|
||
|
||
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
||
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
||
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
||
"""
|
||
|
||
# compute weight scaling factors for fp->int8 and int8->fp
|
||
if is_qkv and not multi_query_mode:
|
||
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
||
dim=-1, keepdims=True)[0].cpu().numpy()
|
||
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
|
||
-1).cpu().numpy()
|
||
elif is_qkv and multi_query_mode:
|
||
hidden_dim = weights.shape[0]
|
||
local_dim = act_range["w"].shape[0]
|
||
kv_dim = (local_dim - hidden_dim) // 2
|
||
scale_w_q = act_range["w"][0:hidden_dim]
|
||
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
||
scale_w_v = act_range["w"][-kv_dim:]
|
||
|
||
scale_w_qkv_t = torch.concat([
|
||
scale_w_q.max(dim=0, keepdim=True)[0],
|
||
scale_w_k.max(dim=0, keepdim=True)[0],
|
||
scale_w_v.max(dim=0, keepdim=True)[0]
|
||
])
|
||
|
||
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
|
||
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
||
else:
|
||
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
|
||
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
||
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
||
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
||
|
||
# compute the rest of needed scaling factors
|
||
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
|
||
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
|
||
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
|
||
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
||
scale_w_orig_quant_t)
|
||
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
||
scale_w_orig_quant_c)
|
||
if is_qkv and not multi_query_mode:
|
||
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
||
scale_w_orig_quant_c.shape)
|
||
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
||
scale_w_orig_quant_c.shape)
|
||
if is_qkv and multi_query_mode:
|
||
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
||
scale_w_q.shape)
|
||
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
||
scale_w_k.shape)
|
||
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
||
scale_w_v.shape)
|
||
scale_y_accum_quant_t = np.concatenate(
|
||
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
||
scale_w_quant_orig_t = np.concatenate([
|
||
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
||
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
||
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
||
])
|
||
|
||
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
||
|
||
if is_qkv and multi_query_mode:
|
||
scale_w_quant_orig_t_expand = np.ones([weights.shape[-1]])
|
||
scale_w_quant_orig_t_expand[:hidden_dim] = scale_w_quant_orig_t[0]
|
||
scale_w_quant_orig_t_expand[hidden_dim:hidden_dim +
|
||
kv_dim] = scale_w_quant_orig_t[1]
|
||
scale_w_quant_orig_t_expand[-kv_dim:] = scale_w_quant_orig_t[2]
|
||
weight_int8 = to_i8(weights * scale_w_quant_orig_t_expand)
|
||
else:
|
||
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
||
return {
|
||
"weight.int8": weight_int8,
|
||
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
||
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
||
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
||
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
||
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
||
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
||
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
||
}
|
||
|
||
|
||
@torch.no_grad()
|
||
def apply_smoothing(scales,
|
||
gemm_weights,
|
||
layernorm_weights=None,
|
||
layernorm_bias=None,
|
||
dtype=torch.float32,
|
||
layernorm_1p=False):
|
||
if not isinstance(gemm_weights, list):
|
||
gemm_weights = [gemm_weights]
|
||
|
||
if layernorm_weights is not None:
|
||
assert layernorm_weights.numel() == scales.numel()
|
||
layernorm_weights.div_(scales).to(dtype)
|
||
if layernorm_bias is not None:
|
||
assert layernorm_bias.numel() == scales.numel()
|
||
layernorm_bias.div_(scales).to(dtype)
|
||
if layernorm_1p:
|
||
layernorm_weights += (1 / scales) - 1
|
||
|
||
for gemm in gemm_weights:
|
||
gemm.mul_(scales.view(1, -1)).to(dtype)
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_gemm(gemm_weights,
|
||
act_scales,
|
||
layernorm_weights=None,
|
||
layernorm_bias=None,
|
||
alpha=0.5,
|
||
weight_scales=None):
|
||
if not isinstance(gemm_weights, list):
|
||
gemm_weights = [gemm_weights]
|
||
orig_dtype = gemm_weights[0].dtype
|
||
|
||
for gemm in gemm_weights:
|
||
# gemm_weights are expected to be transposed
|
||
assert gemm.shape[1] == act_scales.numel()
|
||
|
||
if weight_scales is None:
|
||
weight_scales = torch.cat(
|
||
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
||
dim=0)
|
||
weight_scales = weight_scales.max(dim=0)[0]
|
||
weight_scales.to(float).clamp(min=1e-5)
|
||
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
||
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
||
|
||
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
|
||
orig_dtype)
|
||
|
||
return scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_gemm_fc1_gate(fc1_weights,
|
||
gate_weights,
|
||
act_scales,
|
||
layernorm_weights=None,
|
||
layernorm_bias=None,
|
||
alpha=0.5,
|
||
weight_scales=None):
|
||
gemm_weights = []
|
||
if not isinstance(fc1_weights, list):
|
||
fc1_weights = [fc1_weights]
|
||
if not isinstance(gate_weights, list):
|
||
gate_weights = [gate_weights]
|
||
|
||
for i in range(len(fc1_weights)):
|
||
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
|
||
gemm_weights.append(gemm_weight)
|
||
|
||
orig_dtype = gemm_weights[0].dtype
|
||
|
||
for gemm in gemm_weights:
|
||
# gemm_weights are expected to be transposed
|
||
assert gemm.shape[1] == act_scales.numel()
|
||
|
||
if weight_scales is None:
|
||
weight_scales = torch.cat(
|
||
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
||
dim=0)
|
||
weight_scales = weight_scales.max(dim=0)[0]
|
||
weight_scales.to(float).clamp(min=1e-5)
|
||
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
||
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
||
|
||
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
|
||
layernorm_bias, orig_dtype)
|
||
|
||
return scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def capture_activation_range(model, tokenizer, num_samples=512, seq_len=512):
|
||
model.eval()
|
||
next(model.parameters()).device
|
||
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
||
|
||
test_token_num = 923
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
|
||
def stat_tensor(name, tensor, act_scales, key):
|
||
hidden_dim = tensor.shape[-1]
|
||
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
||
comming_max = torch.max(tensor, dim=0)[0].float()
|
||
|
||
if act_scales[name][key] is None:
|
||
act_scales[name][key] = comming_max
|
||
else:
|
||
act_scales[name][key] = torch.max(act_scales[name][key],
|
||
comming_max)
|
||
|
||
def stat_input_hook(m, x, y, name):
|
||
if isinstance(x, tuple):
|
||
x = x[0]
|
||
stat_tensor(name, x, act_scales, "x")
|
||
stat_tensor(name, y, act_scales, "y")
|
||
|
||
if act_scales[name]["w"] is None:
|
||
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
|
||
None).max(dim=1)[0]
|
||
|
||
hooks = []
|
||
for name, m in model.named_modules():
|
||
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
||
hooks.append(
|
||
m.register_forward_hook(
|
||
functools.partial(stat_input_hook, name=name)))
|
||
|
||
from datasets import load_dataset
|
||
dataset_cnn = load_dataset("ccdv/cnn_dailymail", '3.0.0')
|
||
|
||
for i in tqdm(range(num_samples), desc="calibrating model"):
|
||
datapoint = dataset_cnn['train'][i:i + 1]
|
||
line = copy.copy(datapoint['article'])
|
||
line[0] = line[0] + ' TL;DR: '
|
||
line[0] = line[0].strip()
|
||
line[0] = line[0].replace(" n't", "n't")
|
||
line_encoded = tokenizer(line,
|
||
return_tensors="pt",
|
||
padding=True,
|
||
truncation=True)["input_ids"].type(torch.int64)
|
||
line_encoded = line_encoded[:, -test_token_num:]
|
||
line_encoded = line_encoded.cuda()
|
||
model(line_encoded)
|
||
|
||
for h in hooks:
|
||
h.remove()
|
||
|
||
return act_scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_baichuan_model(model, scales, alpha, baichuan_smoother):
|
||
# Smooth the activation and weights with smoother = $\diag{s}$
|
||
for name, module in model.named_modules():
|
||
class_name = module.__class__.__name__
|
||
if not 'Layer' in class_name:
|
||
continue
|
||
print(f'smoothing module: {name}, class_name: {class_name}')
|
||
# qkv_proj
|
||
layer_name_qkv = name + ".self_attn.W_pack"
|
||
|
||
smoother = smooth_gemm(module.self_attn.W_pack.weight,
|
||
scales[layer_name_qkv]["x"],
|
||
module.input_layernorm.weight, None, alpha)
|
||
|
||
scales[layer_name_qkv]["x"] = scales[layer_name_qkv]["x"] / smoother
|
||
scales[layer_name_qkv]["w"] = module.self_attn.W_pack.weight.abs().max(
|
||
dim=1)[0].float()
|
||
|
||
# =================================================================
|
||
layer_name = name + ".self_attn.o_proj"
|
||
smoother = smooth_gemm(module.self_attn.o_proj.weight,
|
||
scales[layer_name]["x"], None, None, alpha)
|
||
baichuan_smoother[layer_name] = smoother.float()
|
||
|
||
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
||
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
|
||
dim=1)[0].float()
|
||
|
||
# ==================================================================
|
||
fc1_layer_name = name + ".mlp.gate_proj"
|
||
gate_layer_name = name + ".mlp.up_proj"
|
||
|
||
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
|
||
module.mlp.up_proj.weight,
|
||
scales[fc1_layer_name]["x"],
|
||
module.post_attention_layernorm.weight,
|
||
None, alpha)
|
||
|
||
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
||
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
|
||
dim=1)[0].float()
|
||
|
||
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
||
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
|
||
dim=1)[0].float()
|
||
|
||
# ==================================================================
|
||
layer_name = name + ".mlp.down_proj"
|
||
smoother = smooth_gemm(module.mlp.down_proj.weight,
|
||
scales[layer_name]["x"], None, None, alpha)
|
||
baichuan_smoother[layer_name] = smoother.float()
|
||
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
||
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
|
||
dim=1)[0].float()
|
||
|
||
|
||
def get_tllm_linear_sq_weight(vals,
|
||
prefix,
|
||
shape,
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=False,
|
||
per_channel=False,
|
||
last_prefix=None,
|
||
bias=None,
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=0,
|
||
cat_dim=0,
|
||
multi_query_mode=False):
|
||
results = {}
|
||
|
||
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
|
||
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
|
||
q_split = np.split(q, tp_size, axis=-1)
|
||
k_split = np.split(k, tp_size, axis=-1)
|
||
v_split = np.split(v, tp_size, axis=-1)
|
||
return [
|
||
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
||
for ii in range(tp_size)
|
||
][cur_rank]
|
||
|
||
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
||
|
||
if per_token:
|
||
if per_channel:
|
||
original_weights = np.array(vals["weight.int8.col"])
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
local_dim = original_weights.shape[0]
|
||
head_size = (original_weights.shape[1] - local_dim) // 2
|
||
|
||
if multi_query_mode:
|
||
cur_weights = multi_query_split(original_weights, local_dim,
|
||
head_size, tensor_parallel, rank)
|
||
else:
|
||
cur_weights = np.split(original_weights,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
if smoother_value is None:
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([1.0], dtype=np.float32))
|
||
|
||
if per_channel:
|
||
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
||
if smoother_value is None:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(
|
||
vals["scale_w_quant_orig.col"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
else:
|
||
cur_per_channel_value = vals["scale_w_quant_orig"]
|
||
if is_qkv:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_w_quant_orig"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(vals["scale_w_quant_orig"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array(cur_per_channel_value,
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
else:
|
||
if per_channel:
|
||
original_weights = np.array(vals["weight.int8.col"])
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
local_dim = original_weights.shape[0]
|
||
head_size = (original_weights.shape[1] - local_dim) // 2
|
||
|
||
if multi_query_mode:
|
||
cur_weights = multi_query_split(original_weights, local_dim,
|
||
head_size, tensor_parallel, rank)
|
||
else:
|
||
cur_weights = np.split(original_weights,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
|
||
if per_channel:
|
||
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
||
if smoother_value is None:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_y_accum_quant.col"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(
|
||
vals["scale_y_accum_quant.col"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
else:
|
||
cur_per_channel_value = vals["scale_y_accum_quant"]
|
||
# QKV is always per_channel
|
||
if is_qkv:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_y_accum_quant"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(
|
||
vals["scale_y_accum_quant"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array([cur_per_channel_value],
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([vals['scale_x_orig_quant']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
results[prefix + 'act_scale'] = torch.from_numpy(
|
||
np.array([[vals["scale_y_quant_orig"]]],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
if smoother_value is not None:
|
||
cur_smoother_value = np.split(smoother_value,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
||
smoother_shape).contiguous().to(torch.float32)
|
||
|
||
if bias is not None:
|
||
results[prefix + 'bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
def split(weight: torch.Tensor,
|
||
tp_size: int,
|
||
rank: int = 0,
|
||
dim: int = 0) -> torch.Tensor:
|
||
if tp_size == 1:
|
||
return weight
|
||
elif weight.ndim == 1:
|
||
return torch.chunk(weight, tp_size)[rank].contiguous()
|
||
else:
|
||
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
|
||
|
||
|
||
def split_qkv_tp(qkv, n_head, n_kv_heads, n_hidden, tensor_parallel, rank):
|
||
"""
|
||
Splits the QKV matrix according to tensor parallelism
|
||
"""
|
||
kv_head_size = n_kv_heads * (n_hidden // n_head)
|
||
q, k, v = torch.split(qkv, [n_hidden, kv_head_size, kv_head_size], dim=0)
|
||
q = split(q, tensor_parallel, rank, dim=0)
|
||
k = split(k, tensor_parallel, rank, dim=0)
|
||
v = split(v, tensor_parallel, rank, dim=0)
|
||
return torch.concatenate([q, k, v], dim=0).contiguous()
|
||
|
||
|
||
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
|
||
dim: int) -> torch.Tensor:
|
||
return split(weight, tp_size, rank, dim=dim)
|
||
|
||
|
||
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
|
||
dtype: torch.dtype) -> torch.Tensor:
|
||
if f'{prefix}.weight' not in params:
|
||
return None
|
||
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
|
||
|
||
|
||
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
|
||
dtype: torch.dtype) -> torch.Tensor:
|
||
if f'{prefix}.bias' not in params:
|
||
return None
|
||
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
|
||
|
||
|
||
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
|
||
dtype: torch.dtype) -> Tuple[torch.Tensor]:
|
||
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
|
||
|
||
|
||
def get_tllm_linear_weight(
|
||
weight: torch.Tensor,
|
||
prefix: str,
|
||
bias: Optional[torch.Tensor] = None,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
||
) -> Dict[str, torch.Tensor]:
|
||
results = {}
|
||
if use_weight_only:
|
||
v = weight.t().contiguous()
|
||
processed_torch_weights, torch_weight_scales = \
|
||
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v, plugin_weight_only_quant_type)
|
||
results[f'{prefix}.weight'] = processed_torch_weights
|
||
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
|
||
else:
|
||
results[f'{prefix}.weight'] = weight.contiguous()
|
||
|
||
if bias is not None:
|
||
results[f'{prefix}.bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
def get_tllm_param(
|
||
param: torch.Tensor,
|
||
name: str,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
||
) -> Dict[str, torch.Tensor]:
|
||
results = {}
|
||
if name.endswith('.weight') and use_weight_only:
|
||
v = param.t().contiguous()
|
||
processed_torch_weights, torch_weight_scales = \
|
||
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v, plugin_weight_only_quant_type)
|
||
results[name] = processed_torch_weights
|
||
results[name.replace('weight',
|
||
'per_channel_scale')] = torch_weight_scales
|
||
else:
|
||
results[name] = param
|
||
|
||
return results
|
||
|
||
|
||
def load_baichuan_config(model_dir: str) -> AutoConfig:
|
||
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
||
return config
|
||
|
||
|
||
def convert_hf_baichuan_sq(hf_model,
|
||
mapping,
|
||
rank=0,
|
||
dtype='float32',
|
||
per_channel=False,
|
||
per_token=False,
|
||
int8_kv_cache=False,
|
||
act_range=[],
|
||
smoother=[]):
|
||
weights = {}
|
||
tik = time.time()
|
||
tensor_parallel = mapping.tp_size
|
||
model_params = dict(hf_model.named_parameters())
|
||
dtype = getattr(torch, dtype)
|
||
num_attention_heads = hf_model.config.num_attention_heads
|
||
hidden_size = hf_model.config.hidden_size
|
||
inter_size = hf_model.config.intermediate_size
|
||
num_key_value_heads = hf_model.config.num_attention_heads
|
||
multi_query_mode = (num_key_value_heads != num_attention_heads)
|
||
|
||
for l in range(hf_model.config.num_hidden_layers):
|
||
prefix = f'model.layers.{l}.'
|
||
tllm_prex = f'transformer.layers.{l}.'
|
||
|
||
# self_attn.W_pack -> attention.qkv
|
||
qkv_weight = get_weight(model_params, prefix + 'self_attn.W_pack',
|
||
dtype)
|
||
qkv_weight = qkv_weight.t().numpy()
|
||
qkv_out_dim = qkv_weight.shape[1]
|
||
if not multi_query_mode:
|
||
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
||
int8_weights = generate_int8(qkv_weight,
|
||
act_range.get(prefix + 'self_attn.W_pack'),
|
||
is_qkv=True,
|
||
multi_query_mode=multi_query_mode)
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(int8_weights,
|
||
tllm_prex + 'attention.qkv.',
|
||
[1, qkv_out_dim // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=True,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex +
|
||
'input_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=rank,
|
||
cat_dim=-1,
|
||
multi_query_mode=multi_query_mode))
|
||
|
||
if int8_kv_cache:
|
||
qkv_weight = get_weight(model_params, prefix + 'self_attn.W_pack',
|
||
dtype)
|
||
qkv_weight = qkv_weight.t().numpy()
|
||
if not multi_query_mode:
|
||
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
||
int8_weights = generate_int8(qkv_weight,
|
||
act_range.get(prefix +
|
||
'self_attn.W_pack'),
|
||
is_qkv=True,
|
||
multi_query_mode=multi_query_mode)
|
||
weights[tllm_prex +
|
||
'attention.kv_cache_scaling_factor'] = torch.from_numpy(
|
||
np.array([int8_weights['scale_y_quant_orig']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
# attn.out_proj -> attention.dense
|
||
attn_dense_weight = get_weight(model_params,
|
||
prefix + 'self_attn.o_proj', dtype)
|
||
attn_dense_weight = attn_dense_weight.t().numpy()
|
||
int8_weights = generate_int8(attn_dense_weight,
|
||
act_range.get(prefix + 'self_attn.o_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'attention.dense.', [1, hidden_size],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'attention.quantization_scaling_factor',
|
||
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
|
||
smoother_shape=[1, hidden_size // tensor_parallel],
|
||
rank=rank,
|
||
cat_dim=0))
|
||
|
||
# mlp.gate_proj -> mlp.fc
|
||
mlp_fc_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
|
||
dtype)
|
||
mlp_fc_weight = mlp_fc_weight.t().numpy()
|
||
int8_weights = generate_int8(mlp_fc_weight,
|
||
act_range.get(prefix + 'mlp.gate_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.fc.', [1, inter_size // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=rank,
|
||
cat_dim=-1))
|
||
|
||
# mlp.down_proj -> mlp.proj
|
||
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
|
||
dtype)
|
||
mlp_proj_weight = mlp_proj_weight.t().numpy()
|
||
int8_weights = generate_int8(mlp_proj_weight,
|
||
act_range.get(prefix + 'mlp.down_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.proj.', [1, hidden_size],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'mlp.quantization_scaling_factor',
|
||
smoother_value=smoother[prefix + 'mlp.down_proj'],
|
||
smoother_shape=[1, inter_size // tensor_parallel],
|
||
rank=rank,
|
||
cat_dim=0))
|
||
|
||
# mlp.up_proj -> mlp.gate
|
||
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.up_proj',
|
||
dtype)
|
||
mlp_gate_weight = mlp_gate_weight.t().numpy()
|
||
int8_weights = generate_int8(mlp_gate_weight,
|
||
act_range.get(prefix + 'mlp.up_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.gate.', [1, inter_size // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=rank,
|
||
cat_dim=-1))
|
||
|
||
# input layer_norm
|
||
input_ln_weight = get_weight(model_params, prefix + 'input_layernorm',
|
||
dtype)
|
||
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
||
|
||
# post layer_norm
|
||
post_ln_weight = get_weight(model_params,
|
||
prefix + 'post_attention_layernorm', dtype)
|
||
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
||
|
||
embed_w = get_weight(model_params, 'model.embed_tokens', dtype)
|
||
if mapping.is_first_pp_rank():
|
||
# Embedding
|
||
weights['transformer.vocab_embedding.weight'] = embed_w
|
||
lm_head_w = get_weight(model_params, 'lm_head', dtype)
|
||
if mapping.is_last_pp_rank():
|
||
# lm_head weight and bias
|
||
weights['lm_head.weight'] = split_matrix(lm_head_w.clone(),
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
ln_f_w = get_weight(model_params, 'model.norm', dtype)
|
||
# ln_f weight and bias
|
||
weights['transformer.ln_f.weight'] = ln_f_w
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
def convert_hf_baichuan(
|
||
hf_model: AutoModelForCausalLM,
|
||
hf_config: AutoConfig,
|
||
model_version: str,
|
||
mapping: Mapping,
|
||
dtype: str = 'float32',
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8):
|
||
|
||
weights = {}
|
||
tik = time.time()
|
||
|
||
model_params = dict(hf_model.named_parameters())
|
||
dtype = getattr(torch, dtype)
|
||
num_hidden_layers = hf_config.num_hidden_layers
|
||
hf_key = [
|
||
"model.embed_tokens.weight", # vocab_embedding
|
||
"lm_head.weight", # lm_head
|
||
"model.norm.weight", # ln_f
|
||
"self_attn.W_pack.weight", # attention.qkv
|
||
"self_attn.o_proj.weight", # attention.dense
|
||
"mlp.up_proj.weight", # mlp.gate
|
||
"mlp.down_proj.weight", # mlp.proj
|
||
"mlp.gate_proj.weight", # mlp.fc
|
||
"input_layernorm.weight", # input_layernorm
|
||
"post_attention_layernorm.weight", # post_layernorm
|
||
]
|
||
|
||
def load(key_id, layer_idx=-1, tp_dim=-1, quant=False):
|
||
prefix = "" if layer_idx == -1 else f"model.layers.{layer_idx}."
|
||
v = model_params[prefix + hf_key[key_id]]
|
||
if key_id == 3:
|
||
q_emb = v.shape[0] // 3
|
||
model_emb = v.shape[1]
|
||
v = v.reshape(3, q_emb, model_emb)
|
||
if v.shape[1] % mapping.tp_size != 0:
|
||
tensorrt_llm.logger.error(
|
||
"Current weight shape is invalid for mapping.tp_size=" +
|
||
str(mapping.tp_size))
|
||
v = v.split(v.shape[1] // mapping.tp_size, dim=1)[mapping.tp_rank]
|
||
v = v.reshape(3 * (q_emb // mapping.tp_size), model_emb)
|
||
if tp_dim >= 0:
|
||
if v.shape[tp_dim] % mapping.tp_size != 0:
|
||
tensorrt_llm.logger.error(
|
||
"Current weight shape is invalid for mapping.tp_size=" +
|
||
str(mapping.tp_size))
|
||
v = v.split(v.shape[tp_dim] // mapping.tp_size,
|
||
dim=tp_dim)[mapping.tp_rank]
|
||
v = v.to(dtype).contiguous().detach().cpu()
|
||
if quant and use_weight_only:
|
||
processed_torch_weights, torch_weight_scales = torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v.T.contiguous(), plugin_weight_only_quant_type)
|
||
return processed_torch_weights, torch_weight_scales
|
||
else:
|
||
return v
|
||
|
||
# Convert vocab_embedding
|
||
if mapping.is_first_pp_rank():
|
||
weights['transformer.vocab_embedding.weight'] = load(0)
|
||
|
||
# Convert lm_head
|
||
v = load(1, -1, 0)
|
||
if model_version.startswith('v2'):
|
||
v = torch.nn.functional.normalize(v)
|
||
if mapping.is_last_pp_rank():
|
||
weights['lm_head.weight'] = v
|
||
|
||
# Convert ln_f
|
||
if mapping.is_last_pp_rank():
|
||
weights['transformer.ln_f.weight'] = load(2)
|
||
|
||
# Convert layers
|
||
layers_range = mapping.pp_layers(num_hidden_layers)
|
||
for l in layers_range:
|
||
prefix = f"transformer.layers.{l}."
|
||
if use_weight_only:
|
||
weights[prefix + 'attention.qkv.weight'], weights[
|
||
prefix + 'attention.qkv.per_channel_scale'] = load(3,
|
||
l,
|
||
quant=True)
|
||
weights[prefix + 'attention.dense.weight'], weights[
|
||
prefix + 'attention.dense.per_channel_scale'] = load(4,
|
||
l,
|
||
1,
|
||
quant=True)
|
||
weights[prefix + 'mlp.gate.weight'], weights[
|
||
prefix + 'mlp.gate.per_channel_scale'] = load(5,
|
||
l,
|
||
0,
|
||
quant=True)
|
||
weights[prefix + 'mlp.proj.weight'], weights[
|
||
prefix + 'mlp.proj.per_channel_scale'] = load(6,
|
||
l,
|
||
1,
|
||
quant=True)
|
||
weights[prefix + 'mlp.fc.weight'], weights[
|
||
prefix + 'mlp.fc.per_channel_scale'] = load(7, l, 0, quant=True)
|
||
weights[prefix + 'input_layernorm.weight'] = load(8, l)
|
||
weights[prefix + 'post_layernorm.weight'] = load(9, l)
|
||
else:
|
||
weights[prefix + 'attention.qkv.weight'] = load(3, l)
|
||
weights[prefix + 'attention.dense.weight'] = load(4, l, 1)
|
||
weights[prefix + 'mlp.gate.weight'] = load(5, l, 0)
|
||
weights[prefix + 'mlp.proj.weight'] = load(6, l, 1)
|
||
weights[prefix + 'mlp.fc.weight'] = load(7, l, 0)
|
||
weights[prefix + 'input_layernorm.weight'] = load(8, l)
|
||
weights[prefix + 'post_layernorm.weight'] = load(9, l)
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
def convert_baichuan_gptq(hf_config: AutoConfig,
|
||
quant_ckpt_path: str,
|
||
model_version: str,
|
||
mapping=Mapping(),
|
||
dtype="float16"):
|
||
tensorrt_llm.logger.info(
|
||
'Loading weights from groupwise GPTQ Baichuan safetensors...')
|
||
weights = {}
|
||
tik = time.time()
|
||
|
||
gptq_baichuan = safetensors.safe_open(quant_ckpt_path,
|
||
framework="pt",
|
||
device=0)
|
||
gptq_prefix = "model."
|
||
gptq_suffix_list = [".qweight", ".qzeros", ".scales"]
|
||
gptq_key_list = [
|
||
"embed_tokens.weight", # vocab_embedding
|
||
"lm_head.weight", # lm_head
|
||
"norm.weight", # ln_f
|
||
"self_attn.W_pack", # attention.qkv
|
||
"_proj", #
|
||
"self_attn.o_proj", # attention.dense
|
||
"mlp.up_proj", # mlp.gate
|
||
"mlp.down_proj", # mlp.proj
|
||
"mlp.gate_proj", # mlp.fc
|
||
"input_layernorm.weight", # input_layernorm
|
||
"post_attention_layernorm.weight", # post_layernorm
|
||
]
|
||
|
||
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
|
||
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
||
torch_dtype = getattr(torch, dtype)
|
||
|
||
def load(key, no_prefix=0):
|
||
if no_prefix:
|
||
return gptq_baichuan.get_tensor(key)
|
||
else:
|
||
return gptq_baichuan.get_tensor(gptq_prefix + key)
|
||
|
||
def torch_split(v, dim):
|
||
if v.shape[dim] % mapping.tp_size != 0:
|
||
tensorrt_llm.logger.error(
|
||
"Current weight shape is invalid for mapping.tp_size=" +
|
||
str(mapping.tp_size))
|
||
assert False, "Invalid TP size"
|
||
return v.split(v.shape[dim] // mapping.tp_size,
|
||
dim=dim)[mapping.tp_rank]
|
||
|
||
def unpack_int32_into_int8(w_packed):
|
||
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
|
||
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
|
||
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
|
||
w_packed_int4x2.shape[1] * 2,
|
||
dtype=torch.int8)
|
||
w_unpacked[:, ::2] = w_packed_int4x2 % 16
|
||
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
|
||
return w_unpacked.contiguous()
|
||
|
||
def process_and_assign_weight(prefix, v, tp_dim=-1):
|
||
if tp_dim == -1:
|
||
qweight_int32, qzeros_int32, scales_fp16 = [
|
||
item.cpu() for item in v
|
||
]
|
||
else:
|
||
qweight_int32, qzeros_int32, scales_fp16 = [
|
||
torch_split(item, tp_dim).cpu() for item in v
|
||
]
|
||
|
||
USE_UINT4_INPUT = 1 # Set to true if checkpoint store UINT4 weights
|
||
USE_GPTQ_FOR_LLAMA = 1 # GPTQ-for-LLaMA added 1 to zeros
|
||
|
||
qweight_unpacked_int8 = unpack_int32_into_int8(
|
||
qweight_int32.T).T.contiguous() - 8
|
||
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
|
||
torch.quint4x2).view(torch.float16)
|
||
# zeros = zeros * scales
|
||
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
|
||
if not USE_UINT4_INPUT:
|
||
# Correcting UINT4 values back to INT4 order
|
||
mask_negative = qzeros_unpacked_int32[qzeros_unpacked_int32 < 0]
|
||
mask_positive = qzeros_unpacked_int32[qzeros_unpacked_int32 >= 0]
|
||
qzeros_unpacked_int32 = qzeros_unpacked_int32 + 16 * mask_negative - 16 * mask_positive
|
||
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * USE_UINT4_INPUT -
|
||
USE_GPTQ_FOR_LLAMA) * scales_fp16
|
||
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
|
||
|
||
# return processed interleaved weight, original scales and zeros * scales
|
||
weights[prefix + ".weight"] = qweight_interleaved
|
||
weights[prefix + ".weights_scaling_factor"] = scales_fp16
|
||
weights[prefix + ".zero"] = zeros_x_scales_fp16
|
||
|
||
# Load weights from GPTQ checkpoint into TRT-LLM module
|
||
# 1. vocab_embedding
|
||
v = load(gptq_key_list[0])
|
||
if mapping.is_first_pp_rank():
|
||
weights['transformer.vocab_embedding.weight'] = v.to(torch_dtype)
|
||
|
||
# 2. lm_head
|
||
original_v = load(gptq_key_list[1], "no_prefix")
|
||
if model_version.startswith('v2'):
|
||
# baichuan v2 models use NormHead
|
||
tensorrt_llm.logger.info(
|
||
f'Normalizing lm_head.weight for {model_version}')
|
||
v = torch_split(torch.nn.functional.normalize(original_v), 0)
|
||
else:
|
||
v = torch_split(original_v, 0)
|
||
if mapping.is_last_pp_rank():
|
||
weights['lm_head.weight'] = v.to(torch_dtype)
|
||
|
||
# 3. ln_f
|
||
v = load(gptq_key_list[2])
|
||
if mapping.is_last_pp_rank():
|
||
weights['transformer.ln_f.weight'] = v.to(torch_dtype)
|
||
|
||
# 4. Weights inside each layer
|
||
num_hidden_layers = hf_config.num_hidden_layers
|
||
layers_range = mapping.pp_layers(num_hidden_layers)
|
||
for l in layers_range:
|
||
layer_idx = l - layers_range[0]
|
||
prefix = f"layers.{l}."
|
||
tllm_prefix = f"transformer.layers.{l}."
|
||
tensorrt_llm.logger.info(f'Process weights in layer: {layer_idx}')
|
||
|
||
# 4.1 attention.qkv
|
||
qkv_weight_list = []
|
||
for suf in gptq_suffix_list:
|
||
qkv_list = []
|
||
comp_part = load(prefix + gptq_key_list[3] + suf)
|
||
qkv = torch.chunk(comp_part, 3, 1)
|
||
for i in range(3):
|
||
comp_part = qkv[i]
|
||
comp_part = torch_split(comp_part, 1)
|
||
qkv_list.append(comp_part)
|
||
qkv_weight_list.append(torch.cat(qkv_list, dim=1))
|
||
|
||
process_and_assign_weight(tllm_prefix + "attention.qkv",
|
||
qkv_weight_list)
|
||
|
||
# 4.2 attention.dense
|
||
v = [load(prefix + gptq_key_list[5] + suf) for suf in gptq_suffix_list]
|
||
process_and_assign_weight(tllm_prefix + "attention.dense", v, 0)
|
||
|
||
# 4.3 mlp.gate
|
||
v = [load(prefix + gptq_key_list[6] + suf) for suf in gptq_suffix_list]
|
||
process_and_assign_weight(tllm_prefix + "mlp.gate", v, 1)
|
||
|
||
# 4.4 mlp.proj
|
||
v = [load(prefix + gptq_key_list[7] + suf) for suf in gptq_suffix_list]
|
||
process_and_assign_weight(tllm_prefix + "mlp.proj", v, 0)
|
||
|
||
# 4.5 mlp.fc
|
||
v = [load(prefix + gptq_key_list[8] + suf) for suf in gptq_suffix_list]
|
||
process_and_assign_weight(tllm_prefix + "mlp.fc", v, 1)
|
||
|
||
# 4.6 input_layernorm
|
||
v = load(prefix + gptq_key_list[9])
|
||
weights[tllm_prefix + 'input_layernorm.weight'] = v.to(torch_dtype)
|
||
|
||
# 4.7 pst_layernorm
|
||
v = load(prefix + gptq_key_list[10])
|
||
weights[tllm_prefix + 'post_layernorm.weight'] = v.to(torch_dtype)
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# TODO(qijun): Currently, the convert script depends on a torch op:
|
||
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
|
||
# which is included in tensorrt_llm Python package. Otherwise, the convert
|
||
# script does not need to import tensorrt_llm. Will remove it after reimplementing
|
||
# the op with PyTorch.
|
||
print(tensorrt_llm.__version__)
|
||
args = parse_arguments()
|
||
tik = time.time()
|
||
|
||
if not os.path.exists(args.output_dir):
|
||
os.makedirs(args.output_dir)
|
||
|
||
quant_algo = None
|
||
plugin_weight_only_quant_type = None
|
||
if args.use_weight_only and args.weight_only_precision == 'int8':
|
||
plugin_weight_only_quant_type = torch.int8
|
||
quant_algo = "W8A16"
|
||
elif args.use_weight_only and args.weight_only_precision == 'int4':
|
||
plugin_weight_only_quant_type = torch.quint4x2
|
||
quant_algo = "W4A16"
|
||
elif args.use_weight_only and args.weight_only_precision == 'int4_gptq':
|
||
quant_algo = "W4A16_GPTQ"
|
||
|
||
if args.smoothquant:
|
||
if args.per_token and args.per_channel:
|
||
quant_algo = 'W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN'
|
||
elif not args.per_token and not args.per_channel:
|
||
quant_algo = 'W8A8_SQ_PER_TENSOR_PLUGIN'
|
||
elif not args.per_token and args.per_channel:
|
||
quant_algo = 'W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN'
|
||
elif args.per_token and not args.per_channel:
|
||
quant_algo = 'W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN'
|
||
|
||
if args.int8_kv_cache:
|
||
kv_cache_quant_algo = "INT8"
|
||
else:
|
||
kv_cache_quant_algo = None
|
||
|
||
if args.model_version == 'v1_7b' or args.model_version == 'v2_7b':
|
||
position_embedding_type = 'rope_gpt_neox'
|
||
else:
|
||
position_embedding_type = 'alibi'
|
||
|
||
hf_config = load_baichuan_config(args.model_dir)
|
||
if args.model_version == 'v1_7b' or args.model_version == 'v2_7b':
|
||
max_position_embeddings = hf_config.max_position_embeddings
|
||
else:
|
||
max_position_embeddings = hf_config.model_max_length
|
||
|
||
if args.weight_only_precision == 'int4_gptq':
|
||
hf_config.vocab_size = int((hf_config.vocab_size + 63) / 64) * 64
|
||
|
||
world_size = args.tp_size * args.pp_size
|
||
config = {
|
||
'architecture': 'BaichuanForCausalLM',
|
||
'dtype': args.dtype,
|
||
'logits_dtype': args.logits_dtype,
|
||
'vocab_size': hf_config.vocab_size,
|
||
'max_position_embeddings': max_position_embeddings,
|
||
'hidden_size': hf_config.hidden_size,
|
||
'num_hidden_layers': hf_config.num_hidden_layers,
|
||
'num_attention_heads': hf_config.num_attention_heads,
|
||
'num_key_value_heads': hf_config.num_attention_heads,
|
||
'hidden_act': hf_config.hidden_act,
|
||
'intermediate_size': hf_config.intermediate_size,
|
||
'norm_epsilon': hf_config.rms_norm_eps,
|
||
'position_embedding_type': position_embedding_type,
|
||
'quantization': {
|
||
'quant_algo': quant_algo,
|
||
'kv_cache_quant_algo': kv_cache_quant_algo,
|
||
'sq_use_plugin': True,
|
||
'group_size': args.group_size,
|
||
},
|
||
'mapping': {
|
||
'world_size': world_size,
|
||
'tp_size': args.tp_size,
|
||
'pp_size': args.pp_size,
|
||
},
|
||
'use_prompt_tuning': args.max_prompt_embedding_table_size > 0,
|
||
}
|
||
if args.use_weight_only and args.weight_only_precision == 'int4_gptq':
|
||
config['quantization'].update({
|
||
'has_zero_point': True,
|
||
})
|
||
|
||
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
||
json.dump(config, f, indent=4)
|
||
|
||
def covert_and_save(rank):
|
||
mapping = Mapping(world_size=world_size,
|
||
rank=rank,
|
||
tp_size=args.tp_size,
|
||
pp_size=args.pp_size)
|
||
hf_model = AutoModelForCausalLM.from_pretrained(args.model_dir,
|
||
trust_remote_code=True,
|
||
torch_dtype="auto")
|
||
if args.smoothquant is not None or args.int8_kv_cache:
|
||
act_range = {}
|
||
baichuan_smoother = {}
|
||
act_range = capture_activation_range(
|
||
hf_model.cuda(),
|
||
AutoTokenizer.from_pretrained(args.model_dir,
|
||
use_fast=False,
|
||
trust_remote_code=True))
|
||
if args.smoothquant is not None:
|
||
smooth_baichuan_model(hf_model, act_range, args.smoothquant,
|
||
baichuan_smoother)
|
||
weights = convert_hf_baichuan_sq(hf_model, mapping, rank,
|
||
args.dtype, args.per_channel,
|
||
args.per_token, args.int8_kv_cache,
|
||
act_range, baichuan_smoother)
|
||
elif args.use_weight_only and args.weight_only_precision == 'int4_gptq':
|
||
weights = convert_baichuan_gptq(hf_config,
|
||
args.quant_ckpt_path,
|
||
args.model_version,
|
||
mapping,
|
||
dtype=args.dtype)
|
||
else:
|
||
weights = convert_hf_baichuan(
|
||
hf_model,
|
||
hf_config,
|
||
args.model_version,
|
||
mapping,
|
||
dtype=args.dtype,
|
||
use_weight_only=args.use_weight_only,
|
||
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
||
del hf_model
|
||
|
||
safetensors.torch.save_file(
|
||
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
||
|
||
if args.workers == 1:
|
||
for rank in range(world_size):
|
||
covert_and_save(rank)
|
||
else:
|
||
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
||
futures = [
|
||
p.submit(covert_and_save, rank) for rank in range(world_size)
|
||
]
|
||
exceptions = []
|
||
for future in as_completed(futures):
|
||
try:
|
||
future.result()
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
exceptions.append(e)
|
||
assert len(
|
||
exceptions
|
||
) == 0, "Checkpoint conversion failed, please check error log."
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Total time of converting checkpoints: {t}')
|