mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
1358 lines
56 KiB
Python
1358 lines
56 KiB
Python
import argparse
|
||
import copy
|
||
import functools
|
||
import json
|
||
import os
|
||
import time
|
||
import traceback
|
||
from collections import defaultdict
|
||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||
from pathlib import Path
|
||
|
||
import numpy as np
|
||
import safetensors
|
||
import torch
|
||
import torch.nn as nn
|
||
from datasets import load_dataset
|
||
from tqdm import tqdm
|
||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
||
from transformers.pytorch_utils import Conv1D
|
||
|
||
import tensorrt_llm
|
||
from tensorrt_llm._utils import str_dtype_to_torch
|
||
from tensorrt_llm.logger import logger
|
||
from tensorrt_llm.mapping import Mapping
|
||
from tensorrt_llm.models.llama.weight import (load_from_gptq_llama,
|
||
load_from_hf_checkpoint)
|
||
from tensorrt_llm.models.modeling_utils import PretrainedConfig
|
||
|
||
try:
|
||
from transformers import MixtralForCausalLM
|
||
except ImportError:
|
||
MixtralForCausalLM = None
|
||
|
||
|
||
def parse_arguments():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--model_dir', type=str, default=None)
|
||
parser.add_argument('--meta_ckpt_dir', type=str, default=None)
|
||
parser.add_argument('--tp_size',
|
||
type=int,
|
||
default=1,
|
||
help='N-way tensor parallelism size')
|
||
parser.add_argument('--pp_size',
|
||
type=int,
|
||
default=1,
|
||
help='N-way pipeline parallelism size')
|
||
parser.add_argument('--dtype',
|
||
type=str,
|
||
default='float16',
|
||
choices=['float32', 'bfloat16', 'float16'])
|
||
parser.add_argument('--vocab_size', type=int, default=32000)
|
||
parser.add_argument('--n_positions', type=int, default=2048)
|
||
parser.add_argument('--n_layer', type=int, default=32)
|
||
|
||
parser.add_argument(
|
||
'--use_weight_only',
|
||
default=False,
|
||
action="store_true",
|
||
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
||
'See --weight_only_precision to set the precision')
|
||
parser.add_argument(
|
||
'--weight_only_precision',
|
||
const='int8',
|
||
type=str,
|
||
nargs='?',
|
||
default='int8',
|
||
choices=['int8', 'int4', 'int4_gptq'],
|
||
help=
|
||
'Define the precision for the weights when using weight-only quantization.'
|
||
'You must also use --use_weight_only for that argument to have an impact.'
|
||
)
|
||
parser.add_argument(
|
||
"--smoothquant",
|
||
"-sq",
|
||
type=float,
|
||
default=None,
|
||
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
|
||
" to Smoothquant the model, and output int8 weights."
|
||
" A good first try is 0.5. Must be in [0, 1]")
|
||
parser.add_argument(
|
||
'--per_channel',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default, we use a single static scaling factor for the GEMM\'s result. '
|
||
'per_channel instead uses a different static scaling factor for each channel. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
'--per_token',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default, we use a single static scaling factor to scale activations in the int8 range. '
|
||
'per_token chooses at run time, and for each token, a custom scaling factor. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
'--int8_kv_cache',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
|
||
)
|
||
parser.add_argument(
|
||
'--ammo_quant_ckpt_path',
|
||
type=str,
|
||
default=None,
|
||
help='Path of a quantized model checkpoint in .npz format')
|
||
|
||
parser.add_argument(
|
||
'--per_group',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use a single static scaling factor to scale weights in the int4 range. '
|
||
'per_group chooses at run time, and for each group, a custom scaling factor. '
|
||
'The flag is built for GPTQ/AWQ quantization.')
|
||
|
||
parser.add_argument('--load_by_shard',
|
||
action='store_true',
|
||
help='Load a pretrained model shard-by-shard.')
|
||
parser.add_argument('--hidden_act', type=str, default='silu')
|
||
|
||
parser.add_argument('--rotary_base', type=float, default=10000.0)
|
||
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
|
||
|
||
parser.add_argument('--group_size',
|
||
type=int,
|
||
default=128,
|
||
help='Group size used in GPTQ/AWQ quantization.')
|
||
|
||
parser.add_argument("--storage-type",
|
||
"-t",
|
||
type=str,
|
||
default="fp32",
|
||
choices=["fp32", "fp16"])
|
||
parser.add_argument("--dataset-cache-dir",
|
||
type=str,
|
||
default=None,
|
||
help="cache dir to load the hugging face dataset")
|
||
parser.add_argument("--load-model-on-cpu", action="store_true")
|
||
parser.add_argument("--convert-model-on-cpu", action="store_true")
|
||
parser.add_argument(
|
||
'--use_parallel_embedding',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
||
)
|
||
parser.add_argument(
|
||
'--embedding_sharding_dim',
|
||
type=int,
|
||
default=0,
|
||
choices=[0, 1],
|
||
help=
|
||
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
||
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
||
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
||
)
|
||
parser.add_argument(
|
||
'--use_embedding_sharing',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
|
||
'Note: the flag might not take effect when the criteria are not met.')
|
||
parser.add_argument('--use_prompt_tuning',
|
||
action="store_true",
|
||
default=False)
|
||
parser.add_argument('--output_dir',
|
||
type=str,
|
||
default='tllm_checkpoint',
|
||
help='The path to save the TensorRT-LLM checkpoint')
|
||
parser.add_argument(
|
||
'--workers',
|
||
type=int,
|
||
default=1,
|
||
help='The number of workers for converting checkpoint in parallel')
|
||
|
||
parser.add_argument('--enable_pos_shift',
|
||
default=False,
|
||
action='store_true',
|
||
help='Enable position shift for streamingllm method')
|
||
parser.add_argument(
|
||
'--dense_context_fmha',
|
||
default=False,
|
||
action='store_true',
|
||
help=
|
||
'Enable dense fmha in context phase, otherwise sliding window attention.'
|
||
'If dense_context_fmha=False, the sliding window size is the max attention window size.'
|
||
)
|
||
parser.add_argument('--num_medusa_heads', type=int, default=4)
|
||
parser.add_argument(
|
||
'--fixed_num_medusa_heads',
|
||
type=int,
|
||
default=None,
|
||
help="If exist, fix medusa_num_heads from config.json."
|
||
"num_medusa_heads < medusa_num_heads in config.json < fixed_num_medusa_heads"
|
||
)
|
||
parser.add_argument('--num_medusa_layers', type=int, default=1)
|
||
parser.add_argument('--max_medusa_token_len', type=int, default=63)
|
||
parser.add_argument('--medusa_hidden_act', type=str, default="silu")
|
||
parser.add_argument('--medusa_model_dir', type=str, default=None)
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
|
||
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
|
||
"""
|
||
This function has two purposes:
|
||
- compute quantized weights, scaled either per-tensor or per-column
|
||
- compute scaling factors
|
||
|
||
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
||
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
||
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
||
|
||
Here is the list of what we need (T means per-tensor, C per-column):
|
||
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
||
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
||
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
||
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
||
to quant range (int8) (used for CUBLAS) (T, C)
|
||
|
||
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
||
but then the model would change depending on the number of GPUs used.
|
||
|
||
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
||
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
||
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
||
"""
|
||
weights = weights.detach().cpu().numpy()
|
||
|
||
# compute weight scaling factors for fp->int8 and int8->fp
|
||
if is_qkv and not multi_query_mode:
|
||
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
||
dim=-1, keepdims=True)[0].cpu().numpy()
|
||
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
|
||
-1).cpu().numpy()
|
||
elif is_qkv and multi_query_mode:
|
||
hidden_dim = weights.shape[0]
|
||
local_dim = act_range["w"].shape[0]
|
||
kv_dim = (local_dim - hidden_dim) // 2
|
||
scale_w_q = act_range["w"][0:hidden_dim]
|
||
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
||
scale_w_v = act_range["w"][-kv_dim:]
|
||
|
||
scale_w_qkv_t = torch.concat([
|
||
scale_w_q.max(dim=0, keepdim=True)[0],
|
||
scale_w_k.max(dim=0, keepdim=True)[0],
|
||
scale_w_v.max(dim=0, keepdim=True)[0]
|
||
])
|
||
|
||
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
|
||
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
||
else:
|
||
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
|
||
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
||
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
||
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
||
|
||
# compute the rest of needed scaling factors
|
||
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
|
||
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
|
||
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
|
||
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
||
scale_w_orig_quant_t)
|
||
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
||
scale_w_orig_quant_c)
|
||
if is_qkv and not multi_query_mode:
|
||
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
||
scale_w_orig_quant_c.shape)
|
||
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
||
scale_w_orig_quant_c.shape)
|
||
if is_qkv and multi_query_mode:
|
||
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
||
scale_w_q.shape)
|
||
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
||
scale_w_k.shape)
|
||
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
||
scale_w_v.shape)
|
||
scale_y_accum_quant_t = np.concatenate(
|
||
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
||
scale_w_quant_orig_t = np.concatenate([
|
||
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
||
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
||
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
||
])
|
||
|
||
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
||
|
||
if is_qkv and multi_query_mode:
|
||
scale_w_quant_orig_t_expand = np.ones([weights.shape[-1]])
|
||
scale_w_quant_orig_t_expand[:hidden_dim] = scale_w_quant_orig_t[0]
|
||
scale_w_quant_orig_t_expand[hidden_dim:hidden_dim +
|
||
kv_dim] = scale_w_quant_orig_t[1]
|
||
scale_w_quant_orig_t_expand[-kv_dim:] = scale_w_quant_orig_t[2]
|
||
weight_int8 = to_i8(weights * scale_w_quant_orig_t_expand)
|
||
else:
|
||
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
||
return {
|
||
"weight.int8": weight_int8,
|
||
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
||
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
||
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
||
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
||
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
||
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
||
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
||
}
|
||
|
||
|
||
@torch.no_grad()
|
||
def apply_smoothing(scales,
|
||
gemm_weights,
|
||
layernorm_weights=None,
|
||
layernorm_bias=None,
|
||
dtype=torch.float32,
|
||
layernorm_1p=False):
|
||
if not isinstance(gemm_weights, list):
|
||
gemm_weights = [gemm_weights]
|
||
|
||
if layernorm_weights is not None:
|
||
assert layernorm_weights.numel() == scales.numel()
|
||
layernorm_weights.div_(scales).to(dtype)
|
||
if layernorm_bias is not None:
|
||
assert layernorm_bias.numel() == scales.numel()
|
||
layernorm_bias.div_(scales).to(dtype)
|
||
if layernorm_1p:
|
||
layernorm_weights += (1 / scales) - 1
|
||
|
||
for gemm in gemm_weights:
|
||
gemm.mul_(scales.view(1, -1)).to(dtype)
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_gemm(gemm_weights,
|
||
act_scales,
|
||
layernorm_weights=None,
|
||
layernorm_bias=None,
|
||
alpha=0.5,
|
||
weight_scales=None):
|
||
if not isinstance(gemm_weights, list):
|
||
gemm_weights = [gemm_weights]
|
||
orig_dtype = gemm_weights[0].dtype
|
||
|
||
for gemm in gemm_weights:
|
||
# gemm_weights are expected to be transposed
|
||
assert gemm.shape[1] == act_scales.numel()
|
||
|
||
if weight_scales is None:
|
||
weight_scales = torch.cat(
|
||
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
||
dim=0)
|
||
weight_scales = weight_scales.max(dim=0)[0]
|
||
weight_scales.to(float).clamp(min=1e-5)
|
||
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
||
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
||
|
||
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
|
||
orig_dtype)
|
||
|
||
return scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_gemm_fc1_gate(fc1_weights,
|
||
gate_weights,
|
||
act_scales,
|
||
layernorm_weights=None,
|
||
layernorm_bias=None,
|
||
alpha=0.5,
|
||
weight_scales=None):
|
||
gemm_weights = []
|
||
if not isinstance(fc1_weights, list):
|
||
fc1_weights = [fc1_weights]
|
||
if not isinstance(gate_weights, list):
|
||
gate_weights = [gate_weights]
|
||
|
||
for i in range(len(fc1_weights)):
|
||
gemm_weight = torch.cat([fc1_weights[i], gate_weights[i]], dim=0)
|
||
gemm_weights.append(gemm_weight)
|
||
|
||
orig_dtype = gemm_weights[0].dtype
|
||
|
||
for gemm in gemm_weights:
|
||
# gemm_weights are expected to be transposed
|
||
assert gemm.shape[1] == act_scales.numel()
|
||
|
||
if weight_scales is None:
|
||
weight_scales = torch.cat(
|
||
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
|
||
dim=0)
|
||
weight_scales = weight_scales.max(dim=0)[0]
|
||
weight_scales.to(float).clamp(min=1e-5)
|
||
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
|
||
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
|
||
|
||
apply_smoothing(scales, fc1_weights + gate_weights, layernorm_weights,
|
||
layernorm_bias, orig_dtype)
|
||
|
||
return scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_llama_model(model, scales, alpha, llama_qkv_para, llama_smoother):
|
||
# Smooth the activation and weights with smoother = $\diag{s}$
|
||
for name, module in model.named_modules():
|
||
if not isinstance(module, LlamaDecoderLayer):
|
||
continue
|
||
# qkv_proj
|
||
layer_name_q = name + ".self_attn.q_proj"
|
||
layer_name_k = name + ".self_attn.k_proj"
|
||
layer_name_v = name + ".self_attn.v_proj"
|
||
layer_name_qkv = name + ".self_attn.qkv_proj"
|
||
|
||
weight = torch.cat([
|
||
module.self_attn.q_proj.weight, module.self_attn.k_proj.weight,
|
||
module.self_attn.v_proj.weight
|
||
],
|
||
dim=0)
|
||
|
||
smoother = smooth_gemm(weight, scales[layer_name_q]["x"],
|
||
module.input_layernorm.weight, None, alpha)
|
||
|
||
scales[layer_name_qkv]["x"] = scales[layer_name_q]["x"] / smoother
|
||
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
|
||
scales[layer_name_qkv]["y"] = torch.cat([
|
||
scales[layer_name_q]["y"], scales[layer_name_k]["y"],
|
||
scales[layer_name_v]["y"]
|
||
],
|
||
dim=0)
|
||
|
||
# see transpose_weights function
|
||
llama_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
|
||
|
||
# =================================================================
|
||
layer_name = name + ".self_attn.o_proj"
|
||
smoother = smooth_gemm(module.self_attn.o_proj.weight,
|
||
scales[layer_name]["x"], None, None, alpha)
|
||
llama_smoother[layer_name] = smoother.float()
|
||
|
||
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
||
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
# ==================================================================
|
||
fc1_layer_name = name + ".mlp.gate_proj"
|
||
gate_layer_name = name + ".mlp.up_proj"
|
||
|
||
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
|
||
module.mlp.up_proj.weight,
|
||
scales[fc1_layer_name]["x"],
|
||
module.post_attention_layernorm.weight,
|
||
None, alpha)
|
||
|
||
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
||
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
||
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
# ==================================================================
|
||
layer_name = name + ".mlp.down_proj"
|
||
smoother = smooth_gemm(module.mlp.down_proj.weight,
|
||
scales[layer_name]["x"], None, None, alpha)
|
||
llama_smoother[layer_name] = smoother.float()
|
||
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
||
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
|
||
@torch.no_grad()
|
||
def capture_activation_range(model,
|
||
tokenizer,
|
||
dataset,
|
||
num_samples=512,
|
||
seq_len=512):
|
||
model.eval()
|
||
device = next(model.parameters()).device
|
||
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
||
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
|
||
def stat_tensor(name, tensor, act_scales, key):
|
||
hidden_dim = tensor.shape[-1]
|
||
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
||
comming_max = torch.max(tensor, dim=0)[0].float()
|
||
|
||
if act_scales[name][key] is None:
|
||
act_scales[name][key] = comming_max
|
||
else:
|
||
act_scales[name][key] = torch.max(act_scales[name][key],
|
||
comming_max)
|
||
|
||
def stat_input_hook(m, x, y, name):
|
||
if isinstance(x, tuple):
|
||
x = x[0]
|
||
stat_tensor(name, x, act_scales, "x")
|
||
stat_tensor(name, y, act_scales, "y")
|
||
|
||
if act_scales[name]["w"] is None:
|
||
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
|
||
None).max(dim=1)[0]
|
||
|
||
hooks = []
|
||
for name, m in model.named_modules():
|
||
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
||
hooks.append(
|
||
m.register_forward_hook(
|
||
functools.partial(stat_input_hook, name=name)))
|
||
|
||
for i in tqdm(range(num_samples), desc="calibrating model"):
|
||
datapoint = dataset['train'][i:i + 1]
|
||
line = copy.copy(datapoint['article'])
|
||
line[0] = line[0] + ' TL;DR: '
|
||
line[0] = line[0].strip()
|
||
line[0] = line[0].replace(" n't", "n't")
|
||
input_ids = tokenizer(line,
|
||
return_tensors="pt",
|
||
max_length=seq_len,
|
||
padding=True,
|
||
truncation=True).input_ids.to(device)
|
||
model(input_ids)
|
||
for h in hooks:
|
||
h.remove()
|
||
return act_scales
|
||
|
||
|
||
def split(v, tp_size, idx, dim=0):
|
||
if tp_size == 1:
|
||
return v
|
||
if len(v.shape) == 1:
|
||
return torch.chunk(v, tp_size)[idx].contiguous()
|
||
else:
|
||
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
|
||
|
||
|
||
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
||
"""
|
||
Splits the QKV matrix according to tensor parallelism
|
||
"""
|
||
v = v.reshape(3, n_hidden, n_hidden)
|
||
split_v = split(v, tensor_parallel, rank, dim=1)
|
||
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
|
||
return split_v.contiguous()
|
||
|
||
|
||
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
||
"""
|
||
Splits the QKV bias according to tensor parallelism
|
||
"""
|
||
v = v.reshape(3, n_hidden)
|
||
split_v = split(v, tensor_parallel, rank, dim=1)
|
||
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
|
||
return split_v.contiguous()
|
||
|
||
|
||
def split_matrix_tp(v, tensor_parallel, rank, dim):
|
||
return split(v, tensor_parallel, rank, dim=dim)
|
||
|
||
|
||
def get_weight(config, prefix, dtype):
|
||
if config[prefix + '.weight'].dtype != dtype:
|
||
config[prefix + '.weight'].data = config[prefix + '.weight'].to(dtype)
|
||
return config[prefix + '.weight']
|
||
|
||
|
||
def get_bias(config, prefix, dtype):
|
||
if config[prefix + '.bias'].dtype != dtype:
|
||
config[prefix + '.bias'].data = config[prefix + '.bias'].to(dtype)
|
||
return config[prefix + '.bias']
|
||
|
||
|
||
def get_weight_and_bias(config, prefix, dtype):
|
||
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
|
||
|
||
|
||
def get_tllm_linear_weight(weight,
|
||
prefix,
|
||
bias=None,
|
||
use_weight_only=False,
|
||
plugin_weight_only_quant_type=torch.int8,
|
||
postfix='weight'):
|
||
results = {}
|
||
if use_weight_only:
|
||
v = weight.t().contiguous()
|
||
processed_torch_weights, torch_weight_scales = \
|
||
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v, plugin_weight_only_quant_type)
|
||
results[prefix + postfix] = processed_torch_weights
|
||
results[prefix + 'per_channel_scale'] = torch_weight_scales
|
||
else:
|
||
results[prefix + postfix] = weight.contiguous()
|
||
|
||
if bias is not None:
|
||
results[prefix + 'bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
def dup_kv_weight(v, num_head, tp_size):
|
||
assert tp_size % num_head == 0
|
||
reps = tp_size // num_head
|
||
head_size = v.shape[0] // num_head
|
||
v = v.reshape(num_head, head_size,
|
||
-1)[:, None, :, :].expand(num_head, reps, head_size,
|
||
v.shape[1])
|
||
return v.reshape(num_head * reps * head_size, -1).clone().detach()
|
||
|
||
|
||
def get_tllm_linear_sq_weight(vals,
|
||
prefix,
|
||
shape,
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=False,
|
||
per_channel=False,
|
||
last_prefix=None,
|
||
bias=None,
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=0,
|
||
cat_dim=0,
|
||
multi_query_mode=False):
|
||
results = {}
|
||
|
||
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
|
||
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
|
||
q_split = np.split(q, tp_size, axis=-1)
|
||
k_split = np.split(k, tp_size, axis=-1)
|
||
v_split = np.split(v, tp_size, axis=-1)
|
||
return [
|
||
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
||
for ii in range(tp_size)
|
||
][cur_rank]
|
||
|
||
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
||
|
||
if per_token:
|
||
original_weights = vals["weight.int8.col"]
|
||
|
||
local_dim = original_weights.shape[0]
|
||
head_size = (original_weights.shape[1] - local_dim) // 2
|
||
if multi_query_mode:
|
||
cur_weights = multi_query_split(original_weights, local_dim,
|
||
head_size, tensor_parallel, rank)
|
||
else:
|
||
cur_weights = np.split(original_weights,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
if smoother_value is None:
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([1.0], dtype=np.float32))
|
||
|
||
if smoother_value is None:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(vals["scale_w_quant_orig.col"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
else:
|
||
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array(cur_per_channel_value,
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
cur_weights = np.split(original_weights, tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
|
||
cur_per_channel_value = vals["scale_y_accum_quant"]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array([cur_per_channel_value],
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([vals['scale_x_orig_quant']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
results[prefix + 'act_scale'] = torch.from_numpy(
|
||
np.array([[vals["scale_y_quant_orig"]]],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
if smoother_value is not None:
|
||
cur_smoother_value = np.split(smoother_value,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
||
smoother_shape).contiguous().to(torch.float32)
|
||
|
||
if bias is not None:
|
||
results[prefix + 'bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
class QkvWeightHelper:
|
||
""" A helper utility for loading QKV weights from sharded files. """
|
||
|
||
def __init__(self, config: PretrainedConfig):
|
||
self.hidden_size = config.hidden_size
|
||
self.num_heads = config.num_attention_heads
|
||
self.num_kv_heads = config.num_key_value_heads
|
||
self.tp_size = config.mapping.tp_size
|
||
self.tp_rank = config.mapping.tp_rank
|
||
self.is_mha = self.num_heads == self.num_kv_heads
|
||
self._qkv_weights = {}
|
||
|
||
@staticmethod
|
||
def is_qkv_weight(name):
|
||
for k in ['q_proj', 'k_proj', 'v_proj']:
|
||
if 'self_attn' in name and k in name:
|
||
return True
|
||
return False
|
||
|
||
def add_weight(self, i: int, name: str, weight: torch.Tensor):
|
||
if 'q_proj' in name:
|
||
tag = 'q'
|
||
elif 'k_proj' in name:
|
||
tag = 'k'
|
||
elif 'v_proj' in name:
|
||
tag = 'v'
|
||
else:
|
||
raise ValueError(f'Got an unexpected parameter of name {name}')
|
||
if i not in self._qkv_weights:
|
||
self._qkv_weights[i] = {}
|
||
self._qkv_weights[i][tag] = weight
|
||
|
||
def is_qkv_prepared(self, layer_idx):
|
||
if layer_idx not in self._qkv_weights:
|
||
return False
|
||
weights = self._qkv_weights[layer_idx]
|
||
return 'q' in weights and 'k' in weights and 'v' in weights
|
||
|
||
def split_qkv_weights(self, layer_idx):
|
||
if not self.is_qkv_prepared(layer_idx):
|
||
return None
|
||
weights = self._qkv_weights.pop(layer_idx) # to prevent memory leak.
|
||
q, k, v = (torch.tensor(weights[t]) for t in ['q', 'k', 'v'])
|
||
|
||
if not self.is_mha:
|
||
head_size = self.hidden_size // self.num_heads
|
||
if self.num_kv_heads < self.tp_size:
|
||
# duplicate the KV heads up to tensor_parallel
|
||
k = dup_kv_weight(k, self.num_kv_heads, self.tp_size)
|
||
v = dup_kv_weight(v, self.num_kv_heads, self.tp_size)
|
||
assert k.shape[0] % (self.tp_size * head_size) == 0
|
||
assert v.shape[0] % (self.tp_size * head_size) == 0
|
||
wq = split(q, self.tp_size, self.tp_rank)
|
||
wk = split(k, self.tp_size, self.tp_rank)
|
||
wv = split(v, self.tp_size, self.tp_rank)
|
||
fused_qkv = torch.cat((wq, wk, wv), dim=0)
|
||
else:
|
||
qkv = torch.cat([q, k, v], dim=0)
|
||
qkv = qkv.reshape(3, q.shape[0], q.shape[1])
|
||
fused_qkv = split(qkv, self.tp_size, self.tp_rank, dim=1)
|
||
fused_qkv = fused_qkv.reshape(3 * (q.shape[0] // self.tp_size),
|
||
q.shape[1])
|
||
return fused_qkv
|
||
|
||
|
||
def convert_hf_llama(hf_model,
|
||
mapping,
|
||
rank=0,
|
||
dtype='float32',
|
||
use_parallel_embedding=False,
|
||
sharding_dim=0,
|
||
use_weight_only=False,
|
||
share_embedding_table=False,
|
||
plugin_weight_only_quant_type=torch.int8,
|
||
use_smooth_quant=False,
|
||
per_channel=False,
|
||
per_token=False,
|
||
int8_kv_cache=False,
|
||
act_range=[],
|
||
qkv_para=[],
|
||
smoother=[],
|
||
lora_config=None):
|
||
|
||
weights = {}
|
||
tik = time.time()
|
||
tensor_parallel = mapping.tp_size
|
||
model_params = dict(hf_model.named_parameters())
|
||
dtype = getattr(torch, dtype)
|
||
num_attention_heads = hf_model.config.num_attention_heads
|
||
hidden_size = hf_model.config.hidden_size
|
||
intermediate_size = hf_model.config.intermediate_size
|
||
num_key_value_heads = hf_model.config.num_key_value_heads
|
||
mha_mode = (num_key_value_heads == num_attention_heads)
|
||
|
||
num_hidden_layers = hf_model.config.num_hidden_layers
|
||
layers_range = mapping.pp_layers(num_hidden_layers)
|
||
for l in layers_range:
|
||
layer_idx = l - layers_range[0]
|
||
prefix = f'model.layers.{l}.'
|
||
tllm_prex = f'transformer.layers.{layer_idx}.'
|
||
|
||
q_weight = get_weight(model_params, prefix + 'self_attn.q_proj', dtype)
|
||
k_weight = get_weight(model_params, prefix + 'self_attn.k_proj', dtype)
|
||
v_weight = get_weight(model_params, prefix + 'self_attn.v_proj', dtype)
|
||
|
||
if not mha_mode:
|
||
head_size = hidden_size // num_attention_heads
|
||
if num_key_value_heads < tensor_parallel:
|
||
# duplicate the KV heads up to tensor_parallel
|
||
k_weight = dup_kv_weight(k_weight, num_key_value_heads,
|
||
tensor_parallel)
|
||
v_weight = dup_kv_weight(v_weight, num_key_value_heads,
|
||
tensor_parallel)
|
||
assert (k_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
||
assert (v_weight.shape[0] % (mapping.tp_size * head_size)) == 0
|
||
|
||
wq = split(q_weight, mapping.tp_size, mapping.tp_rank)
|
||
wk = split(k_weight, mapping.tp_size, mapping.tp_rank)
|
||
wv = split(v_weight, mapping.tp_size, mapping.tp_rank)
|
||
|
||
split_v = torch.concat((wq, wk, wv))
|
||
|
||
else:
|
||
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
||
|
||
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
|
||
tensor_parallel, mapping.tp_rank)
|
||
if use_smooth_quant:
|
||
qkv_weight = qkv_para[prefix + 'self_attn.qkv_proj']
|
||
|
||
if not mha_mode:
|
||
hidden_size = qkv_weight.shape[0]
|
||
local_dim = hidden_size
|
||
head_size = (qkv_weight.shape[-1] - local_dim) // 2
|
||
qkv_weight = qkv_weight.reshape(hidden_size,
|
||
local_dim + 2 * head_size)
|
||
else:
|
||
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
||
|
||
int8_weights = generate_int8(qkv_weight,
|
||
act_range.get(prefix +
|
||
'self_attn.qkv_proj'),
|
||
is_qkv=True,
|
||
multi_query_mode=bool(not mha_mode))
|
||
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'attention.qkv.', [
|
||
1, 3 * hidden_size // tensor_parallel
|
||
if mha_mode else hidden_size // tensor_parallel +
|
||
(hidden_size // num_key_value_heads) //
|
||
tensor_parallel * 2
|
||
],
|
||
tensor_parallel,
|
||
is_qkv=True,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'input_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=mapping.tp_rank,
|
||
cat_dim=-1,
|
||
multi_query_mode=bool(not mha_mode)))
|
||
else:
|
||
weights.update(
|
||
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.',
|
||
None, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
if int8_kv_cache:
|
||
qkv_y = torch.cat([
|
||
act_range.get(prefix + 'self_attn.q_proj')["y"],
|
||
act_range.get(prefix + 'self_attn.k_proj')["y"],
|
||
act_range.get(prefix + 'self_attn.v_proj')["y"]
|
||
],
|
||
dim=0)
|
||
|
||
int8_kv_scales = qkv_y.max() / 127.
|
||
|
||
kv_cache_weights = {}
|
||
|
||
kv_cache_weights[
|
||
tllm_prex +
|
||
'attention.kv_cache_scaling_factor'] = int8_kv_scales.reshape(
|
||
[1])
|
||
|
||
attn_dense_weight = get_weight(model_params,
|
||
prefix + 'self_attn.o_proj', dtype)
|
||
split_v = split_matrix_tp(attn_dense_weight,
|
||
tensor_parallel,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
if use_smooth_quant:
|
||
attn_dense_weight = attn_dense_weight.t()
|
||
int8_weights = generate_int8(
|
||
attn_dense_weight, act_range.get(prefix + 'self_attn.o_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'attention.dense.', [1, hidden_size],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex +
|
||
'attention.quantization_scaling_factor',
|
||
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
|
||
smoother_shape=[1, hidden_size // tensor_parallel],
|
||
rank=mapping.tp_rank,
|
||
cat_dim=0))
|
||
else:
|
||
weights.update(
|
||
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
|
||
None, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.up_proj',
|
||
dtype)
|
||
split_v = split_matrix_tp(mlp_gate_weight,
|
||
tensor_parallel,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
if use_smooth_quant:
|
||
mlp_gate_weight = mlp_gate_weight.t()
|
||
int8_weights = generate_int8(mlp_gate_weight,
|
||
act_range.get(prefix + 'mlp.up_proj'))
|
||
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.gate.',
|
||
[1, intermediate_size // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=mapping.tp_rank,
|
||
cat_dim=-1))
|
||
else:
|
||
weights.update(
|
||
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.gate.', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
mlp_fc_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
|
||
dtype)
|
||
split_v = split_matrix_tp(mlp_fc_weight,
|
||
tensor_parallel,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
|
||
if use_smooth_quant:
|
||
mlp_fc_weight = mlp_fc_weight.t() #verified
|
||
int8_weights = generate_int8(
|
||
mlp_fc_weight, act_range.get(prefix + 'mlp.gate_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.fc.',
|
||
[1, intermediate_size // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=mapping.tp_rank,
|
||
cat_dim=-1))
|
||
else:
|
||
weights.update(
|
||
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
|
||
dtype)
|
||
split_v = split_matrix_tp(mlp_proj_weight,
|
||
tensor_parallel,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
|
||
if use_smooth_quant:
|
||
mlp_proj_weight = mlp_proj_weight.t()
|
||
int8_weights = generate_int8(
|
||
mlp_proj_weight, act_range.get(prefix + 'mlp.down_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.proj.', [1, hidden_size],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'mlp.quantization_scaling_factor',
|
||
smoother_value=smoother[prefix + 'mlp.down_proj'],
|
||
smoother_shape=[1, intermediate_size // tensor_parallel],
|
||
rank=mapping.tp_rank,
|
||
cat_dim=0))
|
||
else:
|
||
weights.update(
|
||
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
# Layer norms do not use tensor parallelism
|
||
input_ln_weight = get_weight(model_params, prefix + 'input_layernorm',
|
||
dtype)
|
||
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
||
|
||
post_ln_weight = get_weight(model_params,
|
||
prefix + 'post_attention_layernorm', dtype)
|
||
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
||
|
||
v = get_weight(model_params, 'model.embed_tokens', dtype)
|
||
|
||
if hf_model.config.tie_word_embeddings:
|
||
# lm_head.weight has the same weights as embedding
|
||
if mapping.is_last_pp_rank():
|
||
weights['lm_head.weight'] = split(v, mapping.tp_size,
|
||
mapping.tp_rank)
|
||
|
||
if use_parallel_embedding:
|
||
v = split_matrix_tp(v,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=sharding_dim)
|
||
|
||
if mapping.is_first_pp_rank():
|
||
weights['transformer.vocab_embedding.weight'] = v
|
||
|
||
lm_head_weights = get_weight(model_params, 'lm_head', dtype)
|
||
|
||
if mapping.is_last_pp_rank():
|
||
weights['lm_head.weight'] = split_matrix_tp(lm_head_weights,
|
||
tensor_parallel,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
|
||
ln_f_w = get_weight(model_params, 'model.norm', dtype)
|
||
weights['transformer.ln_f.weight'] = ln_f_w
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# TODO(qijun): Currently, the convert script depends on a torch op:
|
||
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
|
||
# which is included in tensorrt_llm Python package. Otherwise, the convert
|
||
# script does not need to import tensorrt_llm. Will remove it after reimplementing
|
||
# the op with PyTorch.
|
||
print(tensorrt_llm.__version__)
|
||
args = parse_arguments()
|
||
world_size = args.tp_size * args.pp_size
|
||
|
||
tik = time.time()
|
||
|
||
if not os.path.exists(args.output_dir):
|
||
os.makedirs(args.output_dir)
|
||
hf_config = None
|
||
if args.model_dir is not None:
|
||
hf_config = LlamaConfig.from_pretrained(args.model_dir)
|
||
|
||
args.model_type = hf_config.model_type
|
||
args.n_head = hf_config.num_attention_heads
|
||
args.inter_size = hf_config.intermediate_size
|
||
args.n_layer = hf_config.num_hidden_layers
|
||
args.n_embd = hf_config.hidden_size
|
||
args.n_kv_head = hf_config.num_key_value_heads
|
||
args.rms_norm_eps = hf_config.rms_norm_eps
|
||
args.vocab_size = hf_config.vocab_size
|
||
args.n_positions = hf_config.max_position_embeddings
|
||
|
||
elif args.meta_ckpt_dir is not None:
|
||
|
||
with open(Path(args.meta_ckpt_dir, "params.json")) as fp:
|
||
meta_config: dict = json.load(fp)
|
||
args.n_embd = meta_config["dim"]
|
||
args.n_head = meta_config["n_heads"]
|
||
args.n_layer = meta_config["n_layers"]
|
||
args.n_kv_head = meta_config.get("n_kv_heads", args.n_head)
|
||
|
||
if "hidden_dim" in meta_config:
|
||
args.inter_size = meta_config["hidden_dim"]
|
||
else:
|
||
args.multiple_of = meta_config.get("multiple_of", 1)
|
||
n_embd = int(4 * args.n_embd * 2 / 3)
|
||
args.ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
|
||
args.inter_size = args.multiple_of * (
|
||
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1)
|
||
// args.multiple_of)
|
||
args.rms_norm_eps = meta_config["norm_eps"]
|
||
|
||
if args.rotary_scaling is not None:
|
||
# assert args.use_gpt_attention_plugin, "RoPE scaling is only supported through GPT attention plugin."
|
||
rotary_scaling = {
|
||
"type": args.rotary_scaling[0],
|
||
"factor": float(args.rotary_scaling[1])
|
||
}
|
||
assert rotary_scaling["type"] in ["linear", "dynamic"]
|
||
assert rotary_scaling["factor"] > 1.0
|
||
args.rotary_scaling = rotary_scaling
|
||
|
||
config = {
|
||
'architecture': 'MedusaForCausalLM',
|
||
'dtype': args.dtype,
|
||
'logits_dtype': 'float32',
|
||
'num_hidden_layers': args.n_layer,
|
||
'num_attention_heads': args.n_head,
|
||
'hidden_size': args.n_embd,
|
||
'intermediate_size': args.inter_size,
|
||
'num_key_value_heads': args.n_kv_head,
|
||
'vocab_size': args.vocab_size,
|
||
'position_embedding_type': 'rope_gpt_neox',
|
||
'max_position_embeddings': args.n_positions,
|
||
'hidden_act': args.hidden_act,
|
||
'rotary_base': args.rotary_base,
|
||
'rotary_scaling': args.rotary_scaling,
|
||
'norm_epsilon': args.rms_norm_eps,
|
||
'quantization': {
|
||
'quant_algo': None,
|
||
'kv_cache_quant_algo': None,
|
||
"sq_use_plugin": True,
|
||
},
|
||
'mapping': {
|
||
'world_size': world_size,
|
||
'tp_size': args.tp_size,
|
||
'pp_size': args.pp_size,
|
||
},
|
||
'use_parallel_embedding': args.use_parallel_embedding,
|
||
'embedding_sharding_dim': args.embedding_sharding_dim,
|
||
'share_embedding_table': args.use_embedding_sharing,
|
||
'use_prompt_tuning': args.use_prompt_tuning,
|
||
'enable_pos_shift': args.enable_pos_shift,
|
||
'dense_context_fmha': args.dense_context_fmha,
|
||
'max_draft_len': args.max_medusa_token_len,
|
||
'num_medusa_heads': args.num_medusa_heads,
|
||
'num_medusa_layers': args.num_medusa_layers
|
||
}
|
||
|
||
if args.use_weight_only:
|
||
if args.weight_only_precision == 'int8':
|
||
config['quantization']['quant_algo'] = 'W8A16'
|
||
elif args.weight_only_precision == 'int4':
|
||
config['quantization']['quant_algo'] = 'W4A16'
|
||
elif args.smoothquant:
|
||
if args.per_channel:
|
||
if args.per_token:
|
||
config['quantization'][
|
||
'quant_algo'] = 'W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN'
|
||
else:
|
||
config['quantization'][
|
||
'quant_algo'] = 'W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN'
|
||
else:
|
||
if args.per_token:
|
||
config['quantization'][
|
||
'quant_algo'] = 'W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN'
|
||
else:
|
||
config['quantization'][
|
||
'quant_algo'] = 'W8A8_SQ_PER_TENSOR_PLUGIN'
|
||
|
||
if args.int8_kv_cache:
|
||
config['quantization']['kv_cache_quant_algo'] = 'INT8'
|
||
|
||
if args.weight_only_precision == 'int4_gptq':
|
||
config['quantization'].update({
|
||
"group_size": args.group_size,
|
||
"has_zero_point": True,
|
||
"pre_quant_scale": False,
|
||
'quant_algo': 'W4A16_GPTQ'
|
||
})
|
||
|
||
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
||
json.dump(config, f, indent=4)
|
||
|
||
if args.weight_only_precision == 'int8':
|
||
plugin_weight_only_quant_type = torch.int8
|
||
elif args.weight_only_precision == 'int4':
|
||
plugin_weight_only_quant_type = torch.quint4x2
|
||
|
||
act_range = {}
|
||
llama_qkv_para = {}
|
||
# smoother for inputs of self_attn.o_proj and mlp.down_proj
|
||
llama_smoother = {}
|
||
model = None
|
||
if args.model_dir is not None:
|
||
hf_model = LlamaForCausalLM if args.model_type != "mixtral" else MixtralForCausalLM
|
||
|
||
model = hf_model.from_pretrained(args.model_dir,
|
||
torch_dtype='auto',
|
||
device_map="auto",
|
||
trust_remote_code=True)
|
||
|
||
if args.smoothquant is not None or args.int8_kv_cache:
|
||
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
|
||
"TOKENIZERS_PARALLELISM", "false")
|
||
if args.load_model_on_cpu:
|
||
logger.warning(
|
||
"Note that running capture_activation_range on cpu would be very small."
|
||
)
|
||
dataset = load_dataset("ccdv/cnn_dailymail",
|
||
'3.0.0',
|
||
cache_dir=args.dataset_cache_dir)
|
||
|
||
act_range = capture_activation_range(
|
||
model,
|
||
LlamaTokenizer.from_pretrained(args.model_dir,
|
||
padding_side='left'), dataset)
|
||
if args.smoothquant is not None:
|
||
smooth_llama_model(model, act_range, args.smoothquant,
|
||
llama_qkv_para, llama_smoother)
|
||
convert_args = {
|
||
'hf_model': model,
|
||
'act_range': act_range,
|
||
'llama_qkv_para': llama_qkv_para,
|
||
'llama_smoother': llama_smoother
|
||
}
|
||
|
||
def covert_and_save(rank, convert_args):
|
||
mapping = Mapping(world_size=world_size,
|
||
rank=rank,
|
||
tp_size=args.tp_size,
|
||
pp_size=args.pp_size)
|
||
|
||
if args.use_weight_only and args.weight_only_precision == 'int4_gptq':
|
||
|
||
weights = load_from_gptq_llama(args.ammo_quant_ckpt_path,
|
||
hf_config,
|
||
mapping,
|
||
dtype=args.dtype)
|
||
else:
|
||
if args.load_by_shard:
|
||
weights = load_from_hf_checkpoint(
|
||
args.model_dir, mapping, PretrainedConfig.from_dict(config))
|
||
|
||
else:
|
||
weights = convert_hf_llama(
|
||
convert_args['hf_model'],
|
||
mapping,
|
||
rank,
|
||
dtype=args.dtype,
|
||
use_weight_only=args.use_weight_only,
|
||
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
||
use_parallel_embedding=args.use_parallel_embedding,
|
||
sharding_dim=args.embedding_sharding_dim,
|
||
share_embedding_table=args.use_embedding_sharing,
|
||
use_smooth_quant=args.smoothquant,
|
||
per_channel=args.per_channel,
|
||
per_token=args.per_token,
|
||
int8_kv_cache=args.int8_kv_cache,
|
||
act_range=convert_args['act_range'],
|
||
qkv_para=convert_args['llama_qkv_para'],
|
||
smoother=convert_args['llama_smoother'])
|
||
|
||
def load_medusa_hf(medusa_path: str,
|
||
mapping=Mapping(),
|
||
dtype='float32'):
|
||
logger.info("Loading Medusa heads' weights ...")
|
||
ckpt_file = Path(medusa_path) / "medusa_lm_head.pt"
|
||
state_dict = torch.load(ckpt_file, map_location="cpu")
|
||
torch_dtype = str_dtype_to_torch(dtype)
|
||
weights = {}
|
||
|
||
for h in range(args.num_medusa_heads):
|
||
for l in range(args.num_medusa_layers):
|
||
w = state_dict[f"{h}.{l}.linear.weight"].clone().to(
|
||
torch_dtype)
|
||
|
||
weights[
|
||
'medusa_heads.{}.medusa_layers.{}.linear.weight'
|
||
.format(h, l)] = split(w, mapping.tp_size,
|
||
mapping.tp_rank)
|
||
|
||
b = state_dict[f"{h}.{l}.linear.bias"].clone().to(
|
||
torch_dtype)
|
||
|
||
weights[
|
||
'medusa_heads.{}.medusa_layers.{}.linear.bias'.
|
||
format(h, l)] = split(b, mapping.tp_size,
|
||
mapping.tp_rank)
|
||
|
||
lm = state_dict[
|
||
f"{h}.{args.num_medusa_layers}.weight"].clone().to(
|
||
torch_dtype) # LM Head
|
||
|
||
weights['medusa_heads.{}.lm_head.weight'.format(
|
||
h)] = split(lm, mapping.tp_size, mapping.tp_rank)
|
||
|
||
return weights
|
||
|
||
if args.medusa_model_dir is not None:
|
||
config_file = Path(args.medusa_model_dir) / "config.json"
|
||
with open(config_file) as fp:
|
||
config = json.load(fp)
|
||
args.num_medusa_heads = config.get('medusa_num_heads',
|
||
args.num_medusa_heads)
|
||
args.num_medusa_layers = config.get('medusa_num_layers',
|
||
args.num_medusa_layers)
|
||
if args.fixed_num_medusa_heads is not None and args.fixed_num_medusa_heads != args.num_medusa_heads:
|
||
logger.info(
|
||
f"fixing num_medusa_heads from {args.num_medusa_heads} to {args.fixed_num_medusa_heads}"
|
||
)
|
||
args.num_medusa_heads = args.fixed_num_medusa_heads
|
||
|
||
assert args.max_medusa_token_len > 0, "should have max_medusa_token_len > 0"
|
||
|
||
medusa_weights = load_medusa_hf(args.medusa_model_dir,
|
||
mapping,
|
||
dtype=args.dtype)
|
||
weights.update(medusa_weights)
|
||
|
||
safetensors.torch.save_file(
|
||
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
||
|
||
if args.workers == 1:
|
||
for rank in range(world_size):
|
||
covert_and_save(rank, convert_args)
|
||
else:
|
||
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
||
futures = [
|
||
p.submit(covert_and_save, rank, convert_args)
|
||
for rank in range(world_size)
|
||
]
|
||
exceptions = []
|
||
for future in as_completed(futures):
|
||
try:
|
||
future.result()
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
exceptions.append(e)
|
||
assert len(
|
||
exceptions
|
||
) == 0, "Checkpoint conversion failed, please check error log."
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Total time of converting checkpoints: {t}')
|