TensorRT-LLMs/examples/qwen/build.py
Kaiyu Xie 728cc0044b
Update TensorRT-LLM (#1233)
* Update TensorRT-LLM

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-05 18:32:53 +08:00

817 lines
33 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import time
# isort: off
import torch
import torch.multiprocessing as mp
import tensorrt as trt
# isort: on
from transformers import AutoConfig, AutoModelForCausalLM
from weight import (load_from_awq_qwen, load_from_binary, load_from_gptq_qwen,
load_from_hf_qwen)
import tensorrt_llm
from tensorrt_llm import profiler
from tensorrt_llm._common import check_max_num_tokens
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers.attention import PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
MODEL_NAME = "qwen"
import onnx
from onnx import TensorProto, helper
now_dir = os.path.dirname(os.path.abspath(__file__))
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, pp_size, rank):
if pp_size == 1:
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
return '{}_{}_tp{}_pp{}_rank{}.engine'.format(model, dtype, tp_size,
pp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(engine)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=1)
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--pp_size', type=int, default=1)
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--bin_model_dir', type=str, default=None)
parser.add_argument("--quant_ckpt_path", type=str, default=None)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument(
'--profiling_verbosity',
type=str,
default='layer_names_only',
choices=['layer_names_only', 'detailed', 'none'],
help=
'The profiling verbosity for the generated TRT engine. Set to detailed can inspect tactic choices and kernel parameters.'
)
parser.add_argument('--log_level',
type=str,
default='info',
choices=[
'internal_error',
'error',
'warning',
'info',
'verbose',
])
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--inter_size', type=int, default=11008)
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--rms_norm_eps', type=float, default=1e-06)
parser.add_argument('--max_batch_size', type=int, default=2)
parser.add_argument('--max_input_len', type=int, default=2048)
parser.add_argument('--max_output_len', type=int, default=2048)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--rotary_base', type=float, default=10000.0)
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--use_paged_context_fmha',
action='store_true',
help=
'Activates paged context FMHA. This mode of the context FMHA is required for chunked context, speculative decoding and reuse of KV cache blocks. Context FMHA performance is worse when this mode is on.'
)
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneficial when batch x num_heads cannot fully utilize GPU.'
)
parser.add_argument(
'--disable_xqa',
default=False,
action='store_true',
help=
'Disable XQA optimization for the generation MHA. See more details in docs/gpt_attention.'
)
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument('--builder_opt', type=int, default=None)
parser.add_argument(
'--output_dir',
type=str,
default='engine_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--use_fused_mlp',
default=False,
action='store_true',
help=
'Enable horizontal fusion in GatedMLP, reduces layer input traffic and potentially improves performance. '
'For FP8 PTQ, the downside is slight reduction of accuracy because one of the quantization scaling factors are discarded '
'(0.45734 vs 0.45755 for LLaMA-v2 7B using ammo/examples/hf/instruct_eval/mmlu.py).'
)
parser.add_argument(
'--dense_context_fmha',
default=False,
action='store_true',
help=
'Enable dense fmha in context phase, otherwise sliding window attention.'
'If dense_context_fmha=False, the sliding window size is the max attention window size.'
)
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument(
"--group_size",
type=int,
default=128,
help="group size used in gptq/awq quantization.",
)
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=1, # Meta does TP on hidden dim
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--disable_weight_only_quant_plugin',
default=False,
action="store_true",
help=
'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_awq', 'int4_gptq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--quantize_lm_head',
default=False,
action="store_true",
help='Quantize lm_head weights as well when using int4_awq.')
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=128,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help=
'Define the max number of tokens supported by the engine, note that it takes no effect if --remove_input_padding is not set'
)
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
parser.add_argument(
'--use_custom_all_reduce',
action='store_true',
help=
'Activates latency-optimized algorithm for all-reduce instead of NCCL.')
parser.add_argument(
'--max_prompt_embedding_table_size',
type=int,
default=0,
help='Setting to a value > 0 enables support for prompt tuning.')
parser.add_argument(
'--gather_all_token_logits',
action='store_true',
default=False,
help='Enable both gather_context_logits and gather_generation_logits')
parser.add_argument('--gather_context_logits',
action='store_true',
default=False,
help='Gather context logits')
parser.add_argument('--gather_generation_logits',
action='store_true',
default=False,
help='Gather generation logits')
parser.add_argument(
'--use_lookup_plugin',
nargs='?',
const=None,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help="Activates the lookup plugin which enables embedding sharing.")
args = parser.parse_args()
logger.set_level(args.log_level)
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if not args.remove_input_padding:
if args.use_gpt_attention_plugin:
logger.warning(
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
)
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
)
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
"Using remove input padding for inflight batching mode.")
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info("Using paged KV cache for inflight batching mode.")
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
args.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=args.per_group,
use_int4_weights="int4" in args.weight_only_precision)
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
if args.rotary_scaling is not None:
assert args.use_gpt_attention_plugin, "RoPE scaling is only supported through GPT attention plugin."
rotary_scaling = {
"type": args.rotary_scaling[0],
"factor": float(args.rotary_scaling[1])
}
assert rotary_scaling["type"] in ["linear", "dynamic"]
assert rotary_scaling["factor"] > 1.0
args.rotary_scaling = rotary_scaling
if args.model_dir is not None:
hf_config = AutoConfig.from_pretrained(
args.model_dir,
trust_remote_code=True,
)
args.inter_size = hf_config.intermediate_size # override the inter_size for QWen
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
if hasattr(hf_config, "num_key_value_heads"):
args.n_kv_head = hf_config.num_key_value_heads
args.n_layer = hf_config.num_hidden_layers
args.n_positions = hf_config.max_position_embeddings
args.vocab_size = hf_config.vocab_size
args.hidden_act = "silu"
args.rms_norm_eps = hf_config.layer_norm_epsilon
args.kv_channels = hf_config.kv_channels
args.rotary_base = hf_config.rotary_emb_base
if args.n_kv_head is None:
args.n_kv_head = args.n_head
if args.n_kv_head != args.n_head:
assert (args.n_head % args.n_kv_head) == 0, \
"MQA/GQA requires the number of heads to be divisible by the number of K/V heads."
assert (args.n_kv_head % args.tp_size) == 0 or (args.tp_size % args.n_kv_head) == 0, \
"MQA/GQA requires either the number of K/V heads to be divisible by the tensor parallelism size OR " \
"the tensor parallelism size to be divisible by the number of K/V heads."
assert args.pp_size * args.tp_size == args.world_size
if args.weight_only_precision == 'int4_awq':
inter_alignment = args.tp_size * 128
if args.inter_size % inter_alignment != 0:
args.inter_size = int((args.inter_size + inter_alignment - 1) /
inter_alignment) * inter_alignment
logger.info("To use awq we pad intermediate_size to {}.".format(
args.inter_size))
if args.quantize_lm_head:
vocab_alignment = args.tp_size * 64
if args.vocab_size % vocab_alignment != 0:
args.vocab_size = int((args.vocab_size + vocab_alignment - 1) /
vocab_alignment) * vocab_alignment
logger.info("To use awq we pad vocab_size to {}.".format(
args.vocab_size))
args.max_num_tokens = check_max_num_tokens(
max_num_tokens=args.max_num_tokens,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
remove_input_padding=args.remove_input_padding,
enable_context_fmha=args.enable_context_fmha,
tokens_per_block=args.tokens_per_block)
assert (math.log2(args.tokens_per_block).is_integer()
), "tokens_per_block must be power of 2"
if args.enable_context_fmha or args.enable_context_fmha_fp32_acc:
assert (args.tokens_per_block >=
128), "Context fMHA requires >= 128 tokens per block"
if args.gather_all_token_logits:
args.gather_context_logits = True
args.gather_generation_logits = True
return args
def get_model_object(args, mapping, trt_dtype=None):
if trt_dtype is None:
trt_dtype = str_dtype_to_trt(args.dtype)
# Initialize Module
tensorrt_llm_qwen = tensorrt_llm.models.QWenForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
seq_length=args.max_input_len,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
dtype=trt_dtype,
mlp_hidden_size=args.inter_size,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
mapping=mapping,
rotary_base=args.rotary_base,
rotary_scaling=args.rotary_scaling,
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim,
quant_mode=args.quant_mode,
rms_norm_eps=args.rms_norm_eps,
use_fused_mlp=args.use_fused_mlp,
use_prompt_tuning=args.max_prompt_embedding_table_size > 0,
dense_context_fmha=args.dense_context_fmha)
quantize_kwargs = {}
if args.use_smooth_quant or args.use_weight_only:
if args.weight_only_precision == 'int4_awq':
exclude_modules = ['lm_head'] if not args.quantize_lm_head else []
quantize_kwargs = {
"group_size": args.group_size,
"zero": False,
"pre_quant_scale": True,
"exclude_modules": exclude_modules,
}
elif args.weight_only_precision == 'int4_gptq':
quantize_kwargs = {
"group_size": args.group_size,
"zero": True,
"pre_quant_scale": False,
}
tensorrt_llm_qwen = quantize_model(tensorrt_llm_qwen, args.quant_mode,
**quantize_kwargs)
if args.per_group:
if args.weight_only_precision == 'int4_awq':
load_from_awq_qwen(tensorrt_llm_qwen=tensorrt_llm_qwen,
quant_ckpt_path=args.quant_ckpt_path,
quantize_lm_head=args.quantize_lm_head,
mapping=mapping,
dtype=args.dtype)
else:
load_from_gptq_qwen(tensorrt_llm_qwen=tensorrt_llm_qwen,
quant_ckpt_path=args.quant_ckpt_path,
mapping=mapping,
dtype=args.dtype)
elif args.model_dir is not None and \
(args.bin_model_dir is None or not os.path.exists(args.bin_model_dir)):
logger.info(f'Loading HF QWen ... from {args.model_dir}')
tik = time.time()
hf_qwen = AutoModelForCausalLM.from_pretrained(
args.model_dir,
device_map={
"transformer": "cpu",
"lm_head": "cpu"
}, # Load to CPU memory
torch_dtype="auto",
trust_remote_code=True,
)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF QWen loaded. Total time: {t}')
load_from_hf_qwen(tensorrt_llm_qwen,
hf_qwen,
mapping,
dtype=args.dtype,
multi_query_mode=(args.n_kv_head != args.n_head))
del hf_qwen
elif args.bin_model_dir is not None:
logger.info(f'Loading QWen ... from {args.bin_model_dir}')
load_from_binary(tensorrt_llm_qwen,
args.bin_model_dir,
mapping,
dtype=args.dtype,
multi_query_mode=(args.n_kv_head != args.n_head))
else:
raise ValueError(
"You must specify either --model_dir or --bin_model_dir")
return tensorrt_llm_qwen
def update_plugin_configs(args, network):
network.plugin_config.to_legacy_setting()
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_rmsnorm_quantization_plugin(dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.multi_block_mode:
network.plugin_config.enable_mmha_multi_block_mode()
if not args.disable_xqa:
network.plugin_config.enable_xqa_optimization()
if args.use_weight_only and not args.disable_weight_only_quant_plugin:
if args.per_group:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype=args.dtype)
else:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype,
args.use_custom_all_reduce)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
if args.use_lookup_plugin:
network.plugin_config.set_lookup_plugin(dtype=args.dtype)
if args.use_paged_context_fmha:
assert args.enable_context_fmha or args.enable_context_fmha_fp32_acc, "context fmha must be enabled"
network.plugin_config.set_paged_context_fmha()
return
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
dtype = str_dtype_to_trt(args.dtype)
mapping = Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
assert args.n_layer % args.pp_size == 0, \
f"num_layers {args.n_layer} must be a multiple of pipeline parallelism size {args.pp_size}"
profiler.print_memory_usage(f'Rank {rank} Engine build starts')
# Initialize Module
tensorrt_llm_qwen = get_model_object(args, mapping=mapping, trt_dtype=dtype)
profiler.print_memory_usage(f'Rank {rank} model weight loaded.')
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
update_plugin_configs(args, network)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_qwen.named_parameters())
# Forward
inputs = tensorrt_llm_qwen.prepare_inputs(
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_seq_len=args.max_input_len + args.max_output_len,
use_cache=True,
max_beam_width=args.max_beam_width,
max_num_tokens=args.max_num_tokens,
prompt_embedding_table_size=args.max_prompt_embedding_table_size,
gather_context_logits=args.gather_context_logits,
gather_generation_logits=args.gather_generation_logits)
tensorrt_llm_qwen(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_qwen.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = kv_dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def get_builder_config_namespace(args, cache):
# NOTE: int8 flag is required to be true when INT8 tensors are exposed to TRT
# TRT-LLM has INT8 I/O when act/weights are quantized without group-scaling (AWQ, GPTQ)
# OR INT8 KV cache is set to contiguous (without paged KV cache enabled).
int8_trt_flag = (args.quant_mode.has_act_or_weight_quant()
and not args.quant_mode.has_per_group_scaling()) or (
not args.paged_kv_cache
and args.quant_mode.has_int8_kv_cache())
config = argparse.Namespace(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
profiling_verbosity=args.profiling_verbosity,
tensor_parallel=args.tp_size,
pipeline_parallel=args.pp_size,
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
max_num_tokens=args.max_num_tokens,
int8=int8_trt_flag,
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed,
opt_level=args.builder_opt,
max_prompt_embedding_table_size=args.max_prompt_embedding_table_size,
gather_context_logits=args.gather_context_logits,
gather_generation_logits=args.gather_generation_logits,
mlp_hidden_size=args.inter_size,
)
return config
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
logger.set_level(args.log_level)
os.makedirs(args.output_dir, exist_ok=True)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
builder_config = builder.create_builder_config(
**vars(get_builder_config_namespace(args, cache)))
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.tp_size,
args.pp_size, cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallel build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')