TensorRT-LLMs/tests/functional/test_selective_scan.py
Kaiyu Xie 728cc0044b
Update TensorRT-LLM (#1233)
* Update TensorRT-LLM

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-05 18:32:53 +08:00

213 lines
9.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import numpy as np
import pytest
import torch
from einops import rearrange
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from torch_ref import selective_scan_ref, selective_state_update_ref
from utils.util import getSMVersion
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand(
list(
product([2048], [16], ['context', 'generation'],
['float16', 'float32', 'bfloat16'])))
def test_selective_scan(self, dim, dstate, req_type, dtype):
# Skip tests that are not supported in pre-ampere architecture
if getSMVersion() < 80:
if dtype == 'bfloat16':
pytest.skip(
"bfloat16 is not supported in pre-ampere architecture")
# configs
batch_size = 1
device = "cuda"
seq_len = 16 if req_type == 'context' else 1
is_variable_B = True
is_variable_C = True
delta_softplus = True
# test data
torch.random.manual_seed(0)
state = torch.randn(batch_size, dstate, dim, device=device)
x = torch.randn(batch_size,
seq_len,
dim,
device=device,
dtype=str_dtype_to_torch(dtype))
dt = torch.randn(batch_size,
seq_len,
dim,
device=device,
dtype=str_dtype_to_torch(dtype))
dt_bias = torch.rand(dim, device=device) - 4.0
A = -torch.rand(dstate, dim, device=device) - 1.0
B = torch.randn(batch_size,
seq_len,
dstate,
device=device,
dtype=str_dtype_to_torch(dtype))
C = torch.randn(batch_size,
seq_len,
dstate,
device=device,
dtype=str_dtype_to_torch(dtype))
D = torch.randn(dim, device=device)
z = torch.randn_like(x)
host_request_types = torch.tensor([0 if req_type == 'context' else 1] *
batch_size,
dtype=torch.int32)
output = torch.zeros(x.shape,
device=device,
dtype=str_dtype_to_torch(dtype))
state_ref = state.detach().clone().permute(0, 2, 1).contiguous()
x_ref = x.detach().clone().permute(0, 2, 1).contiguous()
dt_ref = dt.detach().clone().permute(0, 2, 1).contiguous()
dt_bias_ref = dt_bias.detach().clone()
A_ref = A.detach().clone().permute(1, 0).contiguous()
B_ref = B.detach().clone().permute(0, 2, 1).contiguous()
C_ref = C.detach().clone().permute(0, 2, 1).contiguous()
D_ref = D.detach().clone()
z_ref = z.detach().clone().permute(0, 2, 1).contiguous()
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
x_tensor = Tensor(name='input',
shape=x.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
state_tensor = Tensor(
name='state',
shape=state.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
dt_tensor = Tensor(name='delta',
shape=dt.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
dt_bias_tensor = Tensor(
name='delta_bias',
shape=dt_bias.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
A_tensor = Tensor(name='A',
shape=A.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
B_tensor = Tensor(name='B',
shape=B.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
C_tensor = Tensor(name='C',
shape=C.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
D_tensor = Tensor(name='D',
shape=D.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
z_tensor = Tensor(name='z',
shape=z.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
host_request_types_tensor = Tensor(
name='host_request_types',
shape=host_request_types.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
outputs = tensorrt_llm.functional.selective_scan(
x_tensor, state_tensor, dt_tensor, dt_bias_tensor, A_tensor,
B_tensor, C_tensor, D_tensor, z_tensor,
host_request_types_tensor, dim, dstate, is_variable_B,
is_variable_C, delta_softplus, dtype)
net._mark_output(outputs[0],
'output',
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
net._mark_output(outputs[1],
'present_state',
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
# trt run
inputs = {
'input': x,
'state': state,
'delta': dt,
'delta_bias': dt_bias,
'A': A,
'B': B,
'C': C,
'D': D,
'z': z,
'host_request_types': host_request_types
}
outputs = {'output': output, 'present_state': state}
stream = torch.cuda.current_stream()
builder_config = builder.create_builder_config(precision=dtype, )
engine = builder.build_engine(net, builder_config)
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
session.run(inputs=inputs, outputs=outputs, stream=stream.cuda_stream)
out_ref = None
if req_type == 'context':
# pytorch run
out_ref, state_ref = selective_scan_ref(x_ref,
dt_ref,
A_ref,
B_ref,
C_ref,
D=D_ref,
z=z_ref,
delta_bias=dt_bias_ref,
delta_softplus=True)
elif req_type == 'generation':
# pytorch run
out_ref = selective_state_update_ref(state_ref,
x_ref.squeeze(2),
dt_ref.squeeze(2),
A_ref,
B_ref.squeeze(2),
C_ref.squeeze(2),
D=D_ref,
z=z_ref.squeeze(2),
dt_bias=dt_bias_ref,
dt_softplus=True)
out_ref = out_ref.unsqueeze(2)
dtype_atol = {"float16": 5e-3, "float32": 2e-3, "bfloat16": 5e-2}
output_cpu = outputs['output'].to(torch.float32).cpu()
present_state_cpu = outputs['present_state'].to(torch.float32).cpu()
output_cpu = rearrange(output_cpu, 'b s d -> b d s').contiguous()
present_state_cpu = rearrange(present_state_cpu,
'b d n -> b n d').contiguous()
np.testing.assert_allclose(out_ref.to(torch.float32).cpu().numpy(),
output_cpu.numpy(),
atol=dtype_atol[dtype])
np.testing.assert_allclose(state_ref.to(torch.float32).cpu().numpy(),
present_state_cpu.numpy(),
atol=dtype_atol[dtype])