mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-22 19:52:38 +08:00
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
122 lines
4.1 KiB
Python
122 lines
4.1 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import release_gc
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import SD3Transformer2DModel
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_path',
|
|
type=str,
|
|
default="stabilityai/stable-diffusion-3.5-medium")
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--cp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way context parallelism size')
|
|
parser.add_argument(
|
|
'--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['auto', 'float16', 'bfloat16', 'float32'],
|
|
help=
|
|
"The data type for the model weights and activations if not quantized. "
|
|
"If 'auto', the data type is automatically inferred from the source model; "
|
|
"however, if the source dtype is float32, it is converted to float16.")
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def convert_and_save_hf(args):
|
|
world_size = args.tp_size * args.cp_size
|
|
|
|
def convert_and_save_rank(args, rank):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
cp_size=args.cp_size)
|
|
tik = time.time()
|
|
mmdit = SD3Transformer2DModel.from_pretrained(args.model_path,
|
|
args.dtype,
|
|
mapping=mapping)
|
|
print(f'Total time of reading and converting: {time.time()-tik:.3f} s')
|
|
tik = time.time()
|
|
mmdit.save_checkpoint(args.output_dir, save_config=(rank == 0))
|
|
# post-process checkpoint config
|
|
with open(f"{args.output_dir}/config.json", 'r') as f:
|
|
config = json.load(f)
|
|
config["model_path"] = args.model_path
|
|
config["use_pretrained_pos_emb"] = True if "pos_embed.pos_embed" in [
|
|
name for name, _ in mmdit.named_parameters()
|
|
] else False
|
|
with open(f"{args.output_dir}/config.json", 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
del mmdit
|
|
print(f'Total time of saving checkpoint: {time.time()-tik:.3f} s')
|
|
|
|
execute(args.workers, [convert_and_save_rank] * world_size, args)
|
|
release_gc()
|
|
|
|
|
|
def execute(workers, func, args):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(args, rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
def main():
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
logger.set_level(args.log_level)
|
|
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
assert args.model_path is not None
|
|
convert_and_save_hf(args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|